ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057
Citation: ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD simulation and prediction model of annular frictional pressure drop with combined effects of drillpipe rotation speed and eccentricity [J]. Petroleum Drilling Techniques,2023, 51(6):32-42. DOI: 10.11911/syztjs.2023057

CFD Simulation and Prediction Model of Annular Frictional Pressure Drop with Combined Effects of Drillpipe Rotation Speed and Eccentricity

More Information
  • Received Date: April 18, 2022
  • Revised Date: June 20, 2023
  • Available Online: July 14, 2023
  • Accurate prediction of annular frictional pressure drop is the key to ensuring the accuracy of bottomhole pressure prediction during deep well drilling. The flow rate of the drilling fluid, drillpipe rotation speed, and the annular eccentricity are important factors affecting the annular frictional pressure drop. To investigate the change in annular frictional pressure drop with the combined effects of various factors, a drilling fluid flow model in the annulus of a horizontal well was developed, and the flow characteristics of power-law fluids under laminar and turbulent flow conditions were numerically investigated. The results show that: 1) under the laminar flow condition, annular frictional pressure drop decreases when the eccentricity or the drillpipe rotation speed increases separately. However, when these two parameters increase simultaneously, the annular frictional pressure drop increases first and then decreases as eccentricity increases. This is due to the destruction of helical flow by the inertia effect in the eccentric annulus. 2) Under the turbulent flow condition, drillpipe rotation speed has almost no effects on the frictional pressure drop in the concentric annulus. In the eccentric annulus, with the drillpipe rotation speed increasing, the frictional pressure drop under different eccentricities increases gradually and converges to the frictional pressure drop in the concentric annulus. Based on the numerical simulation data, the prediction model for annular frictional coefficient with the combined effects of drillpipe rotation speed and eccentricity under laminar and turbulent flow conditions are developed. The maximum fitting error of the model to the simulated data is 9.18%, and the prediction error for experimental data is no more than 8.33%. The results of this study could provide reference for wellbore pressure control and hydraulic parameter optimization during deep well drilling.

  • [1]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
    [2]
    李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.
    [3]
    余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20.

    YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.
    [4]
    AHMED R M, MISKA S Z. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[R]. SPE 112604, 2008.
    [5]
    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. Equivalent circulating density modeling of Yield Power Law fluids validated with CFD approach[J]. Journal of Petroleum Science and Engineering, 2016, 140: 16–27. doi: 10.1016/j.petrol.2015.12.027
    [6]
    赵岩. 非牛顿流体偏心环空螺旋流的CFD模拟[D]. 杭州: 中国计量大学, 2017.

    ZHAO Yan. Non-Newtonian fluid in eccentric annulus helical flow field of the CFD simulation[D]. Hangzhou: China Jiliang University, 2017.
    [7]
    蔡萌. 幂律流体偏心环空螺旋流压力梯度的数值计算[J]. 石油钻采工艺,2010,32(2):11–14.

    CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling & Production Technology, 2010, 32(2): 11–14.
    [8]
    MCCANN R C, QUIGLEY M S, ZAMORA M, et al. Effects of high-speed pipe rotation on pressures in narrow annuli[J]. SPE Drilling & Completion, 1995, 10(2): 96–103.
    [9]
    KELESSIDIS V C, MAGLIONE R, TSAMANTAKI C, et al. Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J]. Journal of Petroleum Science and Engineering, 2006, 53(3/4): 203–224.
    [10]
    PILEHVARI A, SERTH R. Generalized hydraulic calculation method for axial flow of non-Newtonian fluids in eccentric annuli[J]. SPE Drilling & Completion, 2009, 24(4): 553–563.
    [11]
    ERGE O, OZBAYOGLU E M, MISKA S Z, et al. The effects of drillstring-eccentricity, -rotation, and -buckling configurations on annular frictional pressure losses while circulating yield-power-law fluids[J]. SPE Drilling & Completion, 2015, 30(3): 257–271.
    [12]
    SORGUN M, OZBAYOGLU M E, AYDIN I. Modeling and experimental study of Newtonian fluid flow in annulus[J]. Journal of Energy Resources Technology, 2010, 132(3): 033102. doi: 10.1115/1.4002243
    [13]
    FOUNARGIOTAKIS K, KELESSIDIS V C, MAGLIONE R. Laminar, transitional and turbulent flow of Herschel–Bulkley fluids in concentric annulus[J]. The Canadian Journal of Chemical Engineering, 2008, 86(4): 676–683. doi: 10.1002/cjce.20074
    [14]
    SAASEN A. Annular frictional pressure losses during drilling—predicting the effect of drillstring rotation[J]. Journal of Energy Resources Technology, 2014, 136(3): 034501. doi: 10.1115/1.4026205
    [15]
    贺成才. 幂律流体同心环空螺旋流数值模拟[J]. 钻井液与完井液,2002,19(4):7–9.

    HE Chengcai. Numerical modeling of the power-law fluid in a helical flow[J]. Drilling Fluid & Completion Fluid, 2002, 19(4): 7–9.
    [16]
    NOURI J M, WHITELAW J H. Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder[J]. International Journal of Heat and Fluid Flow, 1997, 18(2): 236–246. doi: 10.1016/S0142-727X(96)00086-0
    [17]
    FERROUDJI H, HADJADJ A, HADDAD A, et al. Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 3091–3101. doi: 10.1007/s13202-019-0706-x
    [18]
    SALUBI V, MAHON R, OLUYEMI G. The combined effect of fluid rheology, inner pipe rotation and eccentricity on the flow of Newtonian and non-Newtonian fluid through the annuli[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110018. doi: 10.1016/j.petrol.2021.110018
    [19]
    COLEMAN B D, NOLL W. Helical flow of general fluids[J]. Journal of Applied Physics, 1959, 30(10): 1508–1512. doi: 10.1063/1.1734990
    [20]
    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[J]. Journal of Canadian Petroleum Technology, 2010, 49(12): 57–64. doi: 10.2118/141518-PA
    [21]
    翟科军,于洋,何浪,等. 幂律流体螺旋层流流动压降简化模型[J]. 石油机械,2020,48(10):10–15.

    ZHAI Kejun, YU Yang, HE Lang, et al. Simplified pressure drop model for laminar helical flow of power law fluid[J]. China Petroleum Machinery, 2020, 48(10): 10–15.
    [22]
    SAYINDLA S, LUND B, YTREHUS J D, et al. CFD modeling of hydraulic behavior of oil- and water-based drilling fluids in laminar flow[J]. SPE Drilling & Completion, 2019, 34(3): 207–215.
    [23]
    张晋凯,李根生,黄中伟,等. 不同偏心度的环空涡动流场特性[J]. 石油钻采工艺,2016,38(2):133–137.

    ZHANG Jinkai, LI Gensheng, HUANG Zhongwei, et al. Features of vortex flow fields in annuluses with different eccentricities[J]. Oil Drilling & Production Technology, 2016, 38(2): 133–137.
    [24]
    HACIISLAMOGLU M, LANGLINAIS J. Non-Newtonian flow in eccentric annuli[J]. Journal of Energy Resources Technology, 1990, 112(3): 163–169. doi: 10.1115/1.2905753
    [25]
    王常斌,陈皖,田迪,等. 幂律流体偏心环空流场的CFD模拟[J]. 钻井液与完井液,2009,26(3):62–64.

    WANG Changbin, CHEN Wan, TIAN Di, et al. A CFD simulation of the flow field of a power law fluid in an eccentric annulus[J]. Drilling Fluid & Completion Fluid, 2009, 26(3): 62–64.
    [26]
    蒋世全. 牛顿流体条件下偏心环空间隙雷诺数及层流区域方程研究[J]. 中国海上油气,2007,19(6):398–401.

    JIANG Shiquan. The study of eccentric annular clearance Reynolds number and laminar flow area equation under Newtonian fluid condition[J]. China Offshore Oil and Gas, 2007, 19(6): 398–401.
    [27]
    PATEL D. Modification of generalized hydraulic calculation method for non-Newtonian fluids in eccentric annuli[D]. Kingsville, Texas: Texas A & M University-Kingsville, 2006.
    [28]
    DOKHANI V, MA Yue, LI Zili, et al. Effects of drill string eccentricity on frictional pressure losses in annuli[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106853. doi: 10.1016/j.petrol.2019.106853
    [29]
    SULTAN R A, RAHMAN M A, RUSHD S, et al. CFD analysis of pressure losses and deposition velocities in horizontal annuli[J]. International Journal of Chemical Engineering, 2019, 2019: 7068989.
    [30]
    宋先知,李根生,王梦抒,等. 连续油管钻水平井岩屑运移规律数值模拟[J]. 石油钻探技术,2014,42(2):28–32.

    SONG Xianzhi, LI Gensheng, WANG Mengshu, et al. Numerical simulation on cuttings carrying regularity for horizontal wells drilled with coiled tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28–32.
    [31]
    MADLENER K, FREY B, CIEZKI H. Generalized Reynolds number for non-Newtonian fluids[J]. Progress in Propulsion Physics, 2009, 1: 237–250.
    [32]
    AYENI K, OSISANYA S O. Evaluation of commonly used fluid rheological models using developed drilling hydraulic simulator[R]. PETSOC−2004−039, 2004.
    [33]
    VIEIRA NETO J L, MARTINS A L, ATAÍDE C H, et al. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli[J]. Brazilian Journal of Chemical Engineering, 2014, 31(4): 829–838. doi: 10.1590/0104-6632.20140314s00002871
    [34]
    SORGUN M, OZBAYOGLU M E. Predicting frictional pressure loss during horizontal drilling for non-Newtonian fluids[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(7): 631–640. doi: 10.1080/15567030903226264
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]SHI Peiming, NI Huafeng, HE Huifeng, SHI Chongdong, LI Luke, ZHANG Yanbing. Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17-23. DOI: 10.11911/syztjs.2024112
    [3]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [4]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [5]JIA Jia, XIA Zhongyue, FENG Lei, LI Jian, WANG Yang. Key Technology of Optimized and Fast Slim Hole Drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64-70. DOI: 10.11911/syztjs.2021110
    [6]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [7]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [8]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [9]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002
    [10]Guo Wenmeng, Dang Donghong, Zhu Zexin, Xu Minghui, Chen Guang, Huang Xia. Cementing Techniques of Mono-Bore Well Completion in Yishan Slope of Ordos Basin[J]. Petroleum Drilling Techniques, 2014, 42(4): 75-78. DOI: 10.3969/j.issn.1001-0890.2014.04.014
  • Cited by

    Periodical cited type(8)

    1. 党永潮,梁晓伟,罗锦昌,张玉良,柴小勇,高赵伟,蒋勇鹏,焦众鑫. 国家示范工程陆相湖盆夹层型页岩油高效开发技术. 石油钻采工艺. 2024(02): 208-219 .
    2. 寇园园,陈军斌,聂向荣,成程. 基于离散元方法的拉链式压裂效果影响因素分析. 石油钻采工艺. 2023(02): 211-222 .
    3. 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨. 石油钻探技术. 2023(04): 184-191 . 本站查看
    4. 胡文瑞,魏漪,鲍敬伟. 鄂尔多斯盆地非常规油气开发技术与管理模式. 工程管理科技前沿. 2023(03): 1-10 .
    5. 张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 .
    6. 刘尧文,卞晓冰,李双明,蒋廷学,张驰. 基于应力反演的页岩可压性评价方法. 石油钻探技术. 2022(01): 82-88 . 本站查看
    7. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
    8. 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (212) PDF downloads (74) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return