JING Silin, SONG Xianzhi, SUN Yi, et al. Study on axial transport laws of cuttings bed in horizontal wells based on a differential pressure method [J]. Petroleum Drilling Techniques,2024, 52(1):54-61. DOI: 10.11911/syztjs.2024007
Citation: JING Silin, SONG Xianzhi, SUN Yi, et al. Study on axial transport laws of cuttings bed in horizontal wells based on a differential pressure method [J]. Petroleum Drilling Techniques,2024, 52(1):54-61. DOI: 10.11911/syztjs.2024007

Study on Axial Transport Laws of Cuttings Bed in Horizontal Wells Based on a Differential Pressure Method

More Information
  • Received Date: March 31, 2023
  • Revised Date: January 16, 2024
  • Available Online: January 30, 2024
  • To investigate the axial transport law of cuttings bed in the horizontal section of long horizontal wells during rotary drilling, cuttings transport experiments of horizontal wells were conducted based on the differential pressure method. This method utilized differential pressure sensors located at different axial positions in the wellbore to measure the instantaneous pressure drop in the wellbore. These data were used to characterize the axial distribution of cuttings bed in the wellbore and calculate the cuttings bed transport velocity. The impact of fluid density, flow rate, and drill pipe rotation speed on the cuttings bed transport velocity and pressure drop was analyzed. The results indicate that this method effectively describes the characteristics of cuttings bed transport and accurately depicts the axial distribution of cuttings bed within a wellbore. Cutting bed transport velocity is positively correlated with fluid density, flow rate, rotary speed. Increasing the flow rate significantly improves the cuttings bed transport velocity, although a rapid rise in pressure drop limited the maximum flow rate. Increasing the rotary speed can significantly improve the cuttings bed transport velocity and has almost no effect on the wellbore pressure drop. The results provide clarification of the axial transport law of cuttings bed in horizontal wells, providing a theoretical foundation for measuring the axial distribution of downhole cuttings bed and assisting in avoiding the risks of complex wellbore pressure and pipe sticking.

  • [1]
    汪海阁,周波. 致密砂岩气钻完井技术进展及展望[J]. 天然气工业,2022,42(1):159–169. doi: 10.3787/j.issn.1000-0976.2022.01.015

    WANG Haige, ZHOU Bo. Progress and prospect of tight sandstone gas well drilling and completion technologies[J]. Natural Gas Industry, 2022, 42(1): 159–169. doi: 10.3787/j.issn.1000-0976.2022.01.015
    [2]
    王庆,张佳伟,孙铭浩,等. 大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究[J]. 石油钻探技术,2023,51(2):54–60. doi: 10.11911/syztjs.2023006

    WANG Qing, ZHANG Jiawei, SUN Minghao, et al. The settlement drag coefficient of Gulong shale cuttings in power-law fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54–60. doi: 10.11911/syztjs.2023006
    [3]
    ZHU Na, HUANG Wenjun, GAO Deli. Numerical analysis of the stuck pipe mechanism related to the cutting bed under various drilling operations[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part E): 109783.
    [4]
    景帅,肖莉,张好林,等. 基于井眼清洁程度与水力学耦合的环空压耗最小化计算方法[J]. 石油钻探技术,2020,48(2):56–62. doi: 10.11911/syztjs.2020009

    JING Shuai, XIAO Li, ZHANG Haolin, et al. A method for minimizing annulus pressure loss by means of hole cleaning and hydraulics coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56–62. doi: 10.11911/syztjs.2020009
    [5]
    郭骁,李思洋,周蒙恩,等. 考虑岩屑影响的大位移井机械延伸极限研究[J]. 石油钻采工艺,2021,43(3):289–294.

    GUO Xiao, LI Siyang, ZHOU Meng’en, et al. Influence of cuttings on the mechanical extension limit of extended reach well[J]. Oil Drilling & Production Technology, 2021, 43(3): 289–294.
    [6]
    相恒富,孙宝江,李昊,等. 大位移水平井段岩屑运移实验研究[J]. 石油钻采工艺,2014,36(3):1–6.

    XIANG Hengfu, SUN Baojiang, LI Hao, et al. Experimental research on cuttings transport in extended-reach horizontal well[J]. Oil Drilling & Production Technology, 2014, 36(3): 1–6.
    [7]
    宋先知,李根生,王梦抒,等. 连续油管钻水平井岩屑运移规律数值模拟[J]. 石油钻探技术,2014,42(2):28–32.

    SONG Xianzhi, LI Gensheng, WANG Mengshu, et al. Numerical simulation on cuttings carrying regularity for horizontal wells drilled with coiled tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28–32.
    [8]
    SONG Xianzhi, XU Zhengming, WANG Mengshu, et al. Experimental study on the wellbore-cleaning efficiency of microhole-horizontal-well drilling[J]. SPE Journal, 2017, 22(4): 1189–1200. doi: 10.2118/185965-PA
    [9]
    胡金帅,张光伟,李峻岭,等. 基于CFD-DEM耦合模型的岩屑运移数值模拟分析[J]. 断块油气田,2022,29(4):561–566.

    HU Jinshuai, ZHANG Guangwei, LI Junling, et al. Numerical simulation of cuttings migration based on CFD-DEM coupling model[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 561–566.
    [10]
    孙晓峰,姚笛,孙士慧,等. 基于漂移流动模型的水平井岩屑床高度瞬态计算新方法[J]. 天然气工业,2022,42(5):85–92. doi: 10.3787/j.issn.1000-0976.2022.05.009

    SUN Xiaofeng, YAO Di, SUN Shihui, et al. A new transient calculation method of cuttings bed thickness based on drift flow model[J]. Natural Gas Industry, 2022, 42(5): 85–92. doi: 10.3787/j.issn.1000-0976.2022.05.009
    [11]
    TONG T A, OZBAYOGLU E, LIU Yaxin. A transient solids transport model for solids removal evaluation in coiled-tubing drilling[J]. SPE Journal, 2021, 26(5): 2498–2515. doi: 10.2118/205370-PA
    [12]
    汪志明,翟羽佳,高清春. 大位移井井眼清洁监测技术在大港油田的应用[J]. 石油钻采工艺,2012,34(2):17–19. doi: 10.3969/j.issn.1000-7393.2012.02.005

    WANG Zhiming, ZHAI Yujia, GAO Qingchun. Establishment of bore hole cleaning and monitoring technology and its application in Dagang Oilfield[J]. Oil Drilling & Production Technology, 2012, 34(2): 17–19. doi: 10.3969/j.issn.1000-7393.2012.02.005
    [13]
    ZHANG Feifei, ISLAM A. A pressure-driven hole cleaning model and its application in real-time monitoring with along-string pressure measurements[J]. SPE Journal, 2023, 28(1): 1–18. doi: 10.2118/210601-PA
    [14]
    HUQUE M M, IMTIAZ S, ZENDEHBOUDI S, et al. Experimental study of cuttings transport with non-Newtonian fluid in an inclined well using visualization and electrical resistance tomography techniques[J]. SPE Drilling & Completion, 2021, 36(4): 745–762.
    [15]
    HUQUE M M, RAHMAN M A, ZENDEHBOUDI S, et al. Experimental and numerical study of cuttings transport in inclined drilling operations[J]. Journal of Petroleum Science and Engineering, 2022, 208(part B): 109394.
    [16]
    BOURGOYNE A T, Jr, MILLHEIM K K, CHENEVERT M E, et al. Applied drilling engineering[M]. Richardson: Society of Petroleum Engineers, 1986: 145-153.
  • Related Articles

    [1]YIN Shuai, ZHAO Junhui, LIU Ping, SHEN Zhicheng. Opening Conditions and Extension Law of Natural and Hydraulic Fractures in Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 98-105. DOI: 10.11911/syztjs.2024022
    [2]LI Hong, YU Haiyang, YANG Haifeng, DENG Tong, LI Xu, WU Yang. Adaptive Stress Sensitivity Study of Fractured Heterogeneous Tight Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(3): 99-105. DOI: 10.11911/syztjs.2022054
    [3]ZHOU Jian, ZENG Yijin, CHEN Zuo, ZHANG Baoping, XU Shengqiang. Research on Fracture Mapping with Surface Tiltmeters for “Hot Dry Rock” Stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139
    [4]WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
    [5]LI Wei, ZHAO Huan, LI Siqi, Ll Li, SUN Wenfeng. 2D Characterization of Geometric Features and Connectivity of Fracture Networks in Shale Formations[J]. Petroleum Drilling Techniques, 2017, 45(6): 70-76. DOI: 10.11911/syztjs.201706013
    [6]LI Yumei, LYU Wei, SONG Jie, LI Jun, YANG Hongwei, YU Liwei. Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108-113. DOI: 10.11911/syztjs.201604019
    [7]PENG Hao, LI Qian, YIN Hu, TANG Zhiqiang. A New Solution Method for the Lietard Natural Fracture Width Prediction Model[J]. Petroleum Drilling Techniques, 2016, 44(3): 72-76. DOI: 10.11911/syztjs.201603013
    [8]Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
    [9]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [10]Yin Hu, Li Qian, Li Jiantao, Huang Jianzhi. Inversion of In-Situ Stress with the Amount of Casing Deformation[J]. Petroleum Drilling Techniques, 2012, 40(3): 54-57. DOI: 10.3969/j.issn.1001-0890.2012.03.011
  • Cited by

    Periodical cited type(5)

    1. 任向海,李楠,李晶辉,杨志,彭振华,丁雯. 大排量深抽减载抽油泵研制. 重庆科技学院学报(自然科学版). 2024(02): 116-120 .
    2. 秦飞,王禧文,丁保东,曹畅,高晨豪,郭继香. 塔河油田稠油开发经济效益评价. 天然气与石油. 2023(04): 144-150 .
    3. 刘玉国,杨利萍,彭振华,曹畅,丁保东. 塔河油田抽油机效能提升技术研究与应用. 石油石化节能与计量. 2023(10): 1-5 .
    4. 尹丹,罗日蕾. 空心抽油杆杆式电加热技术在高含蜡井的应用. 石油石化节能. 2022(07): 33-36 .
    5. 杜坤,王鹏,李杨,蒋海岩,白玉. 塔河油田典型深抽工艺研究. 辽宁石油化工大学学报. 2019(05): 45-52 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (199) PDF downloads (86) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return