YU Haitang, DING Yi, LIU Yanmei, et al. A dynamical spontaneous imbibition model for shale considering hydration damage [J]. Petroleum Drilling Techniques,2023, 51(5):139-148. DOI: 10.11911/syztjs.2023054
Citation: YU Haitang, DING Yi, LIU Yanmei, et al. A dynamical spontaneous imbibition model for shale considering hydration damage [J]. Petroleum Drilling Techniques,2023, 51(5):139-148. DOI: 10.11911/syztjs.2023054

A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage

More Information
  • Received Date: April 10, 2022
  • Revised Date: June 22, 2023
  • Available Online: August 04, 2023
  • Shale spontaneous imbibition is an important and fundamental phenomenon affecting drilling, fracturing, and other engineering measures. Unlike sandstone or carbonate formation, clay mineral is rich in shale. When the water phase enters into shale, it triggers hydration structural damage after contacting with clay, improving the spontaneous imbibition. Thus, if hydration damage during spontaneous imbibition is ignored, it is not consistent with the actual spontaneous imbibition of shale, affecting the design of drilling and completion engineering. Therefore, based on laboratory experiments, a quantitative characterization method of hydration structural damage was established. According to the evolution rule of hydration damage, formulas for the dynamical capillary force of spontaneous imbibition and the dynamical tortuosity were established, and a model of shale dynamic spontaneous imbibition was established. The spontaneous imbibition curve predicted by the shale dynamic spontaneous imbibition model was in good agreement with the actual spontaneous imbibition curve, which verified the accuracy of the model. The factors influencing the shale dynamic spontaneous imbibition were systematically analyzed by using the shale dynamic spontaneous imbibition model. The results show that hydration can significantly promote shale spontaneous imbibition. Under strong hydration, shale porosity increases, and tortuosity decreases, showing stronger driving force and smaller flow resistance and resulting in significantly increased spontaneous imbibition volume and spontaneous imbibition rate, indicating that hydration damage is the main factor affecting shale spontaneous imbibition. The research results deepen the understanding of shale spontaneous imbibition mechanism and provide a theoretical basis for the development of reasonable technical measures in shale drilling and completion engineering.

  • [1]
    康毅力,张晓怡,游利军,等. 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学,2017,28(6):819–827.

    KANG Yili, ZHANG Xiaoyi, YOU Lijun, et al. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale reservoir[J]. Natural Gas Geoscience, 2017, 28(6): 819–827.
    [2]
    王波,孙金声,申峰,等. 陆相页岩气水平井段井壁失稳机理及水基钻井液对策[J]. 天然气工业,2020,40(4):104–111. doi: 10.3787/j.issn.1000-0976.2020.04.013

    WANG Bo, SUN Jinsheng, SHEN Feng, et al. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures[J]. Natural Gas Industry, 2020, 40(4): 104–111. doi: 10.3787/j.issn.1000-0976.2020.04.013
    [3]
    石秉忠,夏柏如,高书阳,等. 页岩自吸水化控制剂的研制与性能评价[J]. 石油钻探技术,2012,40(5):45–49.

    SHI Bingzhong, XIA Bairu, GAO Shuyang, et al. Development and performance evaluation of shale self-absorption hydration inhibi-tor[J]. Petroleum Drilling Techniques, 2012, 40(5): 45–49.
    [4]
    刘向君,曾韦,梁利喜,等. 龙马溪组页岩地层井壁坍塌周期预测[J]. 特种油气藏,2016,23(5):130–133.

    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Prediction of borehole wall collapse cycle in Longmaxi Shale[J]. Special Oil & Gas Reservoirs, 2016, 23(5): 130–133.
    [5]
    贾利春,张超平,周井红. 结合 CT 技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214–217.

    JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology [J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214–217.
    [6]
    高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术,2018,46(3):20–26.

    GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new Method for evaluating the characteristics of hydration in the Longmaxi shale gas reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.
    [7]
    罗鸣,高德利,黄洪林,等. 钻井液对页岩力学特性及井壁稳定性的影响[J]. 石油钻采工艺,2022,44(6):693–700.

    LUO Ming, GAO Deli, HUANG Honglin, et al. Effects of drilling fluids on shale mechanical properties and wellbore stability[J]. Oil Drilling & Production Technology, 2022, 44(6): 693–700.
    [8]
    石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023,51(1):22–33.

    SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(1): 22–33.
    [9]
    袁和义,陈平. 基于直剪试验的页岩水化作用的强度弱化规律[J]. 天然气工业,2015,35(11):71–77.

    YUAN Heyi, CHEN Ping. Strength weakening rules of shale hydration based on direct shear tests[J]. Natural Gas Industry, 2015, 35(11): 71–77.
    [10]
    WASHBURN E W. Dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273–283. doi: 10.1103/PhysRev.17.273
    [11]
    TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [12]
    HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219(1): 75–80. doi: 10.2118/1361-G
    [13]
    WU Zhongwei, CUI Chuanzhi, YE Yinzhu, et al. A fractal model for quantitative evaluating the effects of spontaneous imbibition and displacement on the recovery of tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108120. doi: 10.1016/j.petrol.2020.108120
    [14]
    LI Yudan, KALANTARI-DAHAGHI A, ZOLFAGHARI A, et al. Fractal-based real gas flow model in shales: An interplay of nano-pore and nano-fracture networks[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1188–1202.
    [15]
    何颂根. 页岩多重孔隙水相自吸作用模型研究[D]. 成都: 西南石油大学, 2017.

    HE Songgen. Research of water imbibition model in shale multiple pores[D]. Chengdu: Southwest Petroleum University, 2017.
    [16]
    何颂根,冉旭,于丹,等. 页岩多重矿物组分孔隙水相自吸能力评价[J]. 断块油气田,2022,29(5):598–603.

    HE Songgen,RAN Xu,YU Dan,et al. Evaluation of the ability of water-phase spontaneous imbibition in multiple pores of shale[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 598–603.
    [17]
    MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 22–32. doi: 10.1016/j.juogr.2014.04.001
    [18]
    LIANG Lixi, XIONG Jian, LIU Xiangun, et al. Mineralogical, microstructural and physiochemical characteristics of organic-rich shales in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1200–1212. doi: 10.1016/j.jngse.2015.08.026
    [19]
    WU Keliu, LI Xiangfang, GUO Chaohua, et al. A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion[J]. SPE Journal, 2016, 21(5): 1583–1611. doi: 10.2118/2014-1921039-PA
    [20]
    WANG Xiukun, SHENG J J. Multi-scaled pore network modeling of gas-water flow in shale formations[J]. Journal of Petroleum Science and Engineering, 2019, 177: 899–908. doi: 10.1016/j.petrol.2019.03.005
    [21]
    李江涛,汪志明,魏建光,等. 基于格子玻尔兹曼和有限差分方法的页岩气升尺度渗流模拟[J]. 大庆石油地质与开发,2019,38(3):144–151. doi: 10.19597/j.issn.1000-3754.201903022

    LI Jiangtao, WANG Zhiming, WEI Jianguang, et al. Percolating simulation of the shale gas upscaling based on lattice Boltzmann and finite difference methods[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3): 144–151. doi: 10.19597/j.issn.1000-3754.201903022
    [22]
    曾凡辉,张蔷,郭建春,等. 页岩水化及水锁解除机制[J]. 石油勘探与开发,2019,38(3):144–151.

    ZENG Fanhui, ZHANG Qiang, GUO Jianchun, et al. Mechanisms of shale hydration and water block removal[J]. Petroleum Exploration and Development, 2019, 38(3): 144–151.
    [23]
    肖文联,张骏强,杜洋,等. 页岩带压渗吸核磁共振响应特征实验研究[J]. 西南石油大学学报(自然科学版),2019,41(6):13–18.

    XIAO Wenlian, ZHANG Junqiang, DU Yang, et al. An experimental study on NMR response characteristics of imbibition subjected to pressure in shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6): 13–18.
    [24]
    刘锟. 硬脆性页岩水化控制方法研究[D]. 成都: 西南石油大学, 2014.

    LIU Kun. Reseach on the mechanism and control methods of brittle shale hydration[D]. Chengdu: Southwest Petroleum University, 2014.
    [25]
    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025
    [26]
    钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.11698/PED.2017.04.15

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.11698/PED.2017.04.15
    [27]
    SCHMITT M, FERNANDES C P, DA CUNHA NETO J A B, et al. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138–149. doi: 10.1016/j.marpetgeo.2012.09.001
    [28]
    YU Boming, LI Jianhua. A geometry model for tortuosity of flow path in porous media[J]. Chinese Physics Letters, 2004, 21(8): 1569–1571. doi: 10.1088/0256-307X/21/8/044
    [29]
    徐鹏,李翠红,柳海成,等. 多尺度多孔介质有效气体输运参数的分形特征[J]. 地球科学,2017,42(8):1373–1378.

    XU Peng, LI Cuihong, LIU Haicheng, et al. Fractal features of the effective gas transport coefficient for multiscale porous media[J]. Earth Science, 2017, 42(8): 1373–1378.
    [30]
    徐加放,邱正松,吕开河,等. 泥页岩水化-力学耦合模拟实验装置与压力传递实验新技术[J]. 石油学报,2005,26(6):115–118. doi: 10.3321/j.issn:0253-2697.2005.06.027

    XU Jiafang, QIU Zhengsong, LYU Kaihe, et al. Pressure transmission testing technology and simulation equipment for hydra-mechanics coupling of shale[J]. Acta Petrolei Sinica, 2005, 26(6): 115–118. doi: 10.3321/j.issn:0253-2697.2005.06.027
    [31]
    何更生, 唐海. 油层物理[M]. 北京: 石油工业出版社, 2011.

    HE Gengsheng, TANG Hai. Petrophysics[M]. Beijing: Petroleum Industry Press, 2011
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [3]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [4]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [5]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [6]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
    [7]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [8]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [9]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(6)

    1. 徐佳,李乾,雷磊,杜帅. 东海油气田油基钻井液体系评价及现场措施优化. 海洋石油. 2023(02): 68-73 .
    2. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    3. 褚奇. 一种环保型无泡防水锁剂. 钻井液与完井液. 2023(04): 475-480 .
    4. 吴若宁,刘云,成志刚,邓富元,郭红强,包恒,郭星波. 特低渗油藏钻井过程中储层损害机理及对策. 非常规油气. 2022(06): 100-107 .
    5. 吴晓红. 中低渗油藏高含水后期储层特征、损害因素及对策——以南堡1-5区东一段为例. 应用化工. 2021(S1): 392-396+405 .
    6. 韩健庄. 浅谈全液压动力头结合高频震动在岩芯钻探中的应用. 西部探矿工程. 2020(11): 66-67+70 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (119) PDF downloads (30) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return