WANG Zhizhan, DU Huanfu, LI Xiangmei, NIU Qiang. Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155-162. DOI: 10.11911/syztjs.2021093
Citation: WANG Zhizhan, DU Huanfu, LI Xiangmei, NIU Qiang. Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155-162. DOI: 10.11911/syztjs.2021093

Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil

More Information
  • Received Date: June 06, 2021
  • Revised Date: July 04, 2021
  • Available Online: July 15, 2021
  • The research on continental shale oil has just started in China. The key development fields of logging, the link of geology-engineering integration, are not yet clear. There is no systematic establishment of a corresponding collection and evaluation technical system, which restricts the development and full exploitation of shale oil logging to a certain extent. After a systematic analysis of current status of shale oil logging and the requirements of the geology-engineering integration of shale oil, the contents, difficulties, and shortcomings of logging evaluation were analyzed in detail from the four aspects, including a quantitative analysis of mineral components and identification of favorable lithofacies while drilling, reservoir and oil-bearing property evaluation, mobility evaluation, and fracrability evaluation. It is proposed that the development of diffuse reflection infrared Fourier transform spectroscopy (DRIFTS), online nuclear magnetic resonance (NMR) logging for the oil-bearing property of drilling fluids, T1-T2 two-dimensional NMR logging of rock samples, and logging rock mechanics should be emphasized. On this basis, according to the principles of pertinence, effectiveness and economy, continental shale oil can be divided into two types: medium-low maturity and medium-high maturity, and the technical system for logging based on the evaluation of reservoir property, oil-bearing property, mobility, fracrability, and drillability was developed, in a way that can guide the development and production practice in shale oil logging.
  • [1]
    孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
    [2]
    杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559. doi: 10.3969/j.issn.1672-7703.2019.05.002

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559. doi: 10.3969/j.issn.1672-7703.2019.05.002
    [3]
    杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003

    DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003
    [4]
    门相勇,王陆新,王越,等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探,2021,26(3):1–8.

    MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1–8.
    [5]
    赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537–545.

    ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537–545.
    [6]
    GB/T 38718—2020 页岩油地质评价方法[S].

    GB/T 38718—2020 Geological evaluating methods for shale oil[S].
    [7]
    崔宝文,陈春瑞,林旭东,等. 松辽盆地古龙页岩油甜点特征及分布[J]. 大庆石油地质与开发,2020,39(3):45–55.

    CUI Baowen, CHEN Chunrui, LIN Xudong, et al. Characteristics and distribution of sweet spots in Gulong shale oil reserviors of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 45–55.
    [8]
    王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7.

    WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7.
    [9]
    王志战. 非常规油气层录井综合解释的思路与方法[J]. 录井工程,2018,29(2):1–4. doi: 10.3969/j.issn.1672-9803.2018.02.001

    WANG Zhizhan. The idea and methods of surface logging comprehensive interpretation of unconventional reservoir[J]. Mud Logging Engineering, 2018, 29(2): 1–4. doi: 10.3969/j.issn.1672-9803.2018.02.001
    [10]
    谢广龙. 胜利油区页岩油井现场录井系列方法[J]. 录井工程,2016,27(4):21–26. doi: 10.3969/j.issn.1672-9803.2016.04.005

    XIE Guanglong. On-site mud logging methods for shale oil wells in Shengli oil area[J]. Mud Logging Engineering, 2016, 27(4): 21–26. doi: 10.3969/j.issn.1672-9803.2016.04.005
    [11]
    张丽艳,秦文凯. 松辽盆地古龙凹陷页岩油录井解释评价方法研究[J]. 录井工程,2019,30(4):55–61. doi: 10.3969/j.issn.1672-9803.2019.04.011

    ZHANG Liyan, QIN Wenkai. Mud logging interpretation and evaluation method of shale oil in Gulong Sag, Songliao Basin[J]. Mud Logging Engineering, 2019, 30(4): 55–61. doi: 10.3969/j.issn.1672-9803.2019.04.011
    [12]
    陈贺, 谢文敏, 苏沛强, 等. 录井技术组合在大港陆相页岩油勘探开发中的应用[J]. 录井工程, 2020, 31(增刊1): 37–41.

    CHEN He, XIE Wenmin, SU Peiqiang, et al. Application of technical combination for mud logging in the exploration and development of continental shale oil in Dagang[J]. Mud Logging Engineering, 2020, 31(supplement1): 37–41.
    [13]
    马青春. 页岩油录井综合评价方法探索: 以冀东油田NP2-SL井为例[J]. 录井工程, 2020, 31(增刊1): 13–18.

    MA Qingchun. Exploration of the comprehensive evaluation method for shale oil logging: A case study of NP 2-SL well in Jidong Oilfield[J]. Mud Logging Engineering, 2020, 31(supplement1): 13–18.
    [14]
    张文雅,颜怀羽,李娟,等. 页岩油“三类、三性”录井评价方法及其在饶阳凹陷的应用[J]. 录井工程,2020,31(2):79–85. doi: 10.3969/j.issn.1672-9803.2020.02.014

    ZHANG Wenya, YAN Huaiyu, LI Juan, et al. The mud logging evaluation method of three types and three properties of shale oil and its application in Raoyang Sag[J]. Mud Logging Engineering, 2020, 31(2): 79–85. doi: 10.3969/j.issn.1672-9803.2020.02.014
    [15]
    葛瑞全,李家贵,井小艳,等. 电镜扫描矿物定量评价技术在碎屑岩储集层评价中的应用[J]. 录井工程,2017,28(3):109–113. doi: 10.3969/j.issn.1672-9803.2017.03.023

    GE Ruiquan, LI Jiagui, JING Xiaoyan, et al. Application of electron microscope scanning mineral quantitative evaluation technique in clastic reservoir evaluation[J]. Mud Logging Engineering, 2017, 28(3): 109–113. doi: 10.3969/j.issn.1672-9803.2017.03.023
    [16]
    王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119–133.

    WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Fomation of the lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119–133.
    [17]
    柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828– 838.

    LIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828– 838.
    [18]
    金成志,董万百,白云风,等. 松辽盆地古龙页岩岩相特征与成因[J]. 大庆石油地质与开发,2020,39(3):35–44.

    JIN Chengzhi, DONG Wanbai, BAI Yunfeng, et al. Lithofacies characteristics and Genesis analysis of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35–44.
    [19]
    王志战,李新,李三国. 高分辨率核磁共振录井技术进展及前景展望[J]. 录井工程,2017,28(2):1–3. doi: 10.3969/j.issn.1672-9803.2017.02.001

    WANG Zhizhan, LI Xin, LI Sanguo. Progress and prospect of high resolution NMR surface logging technology[J]. Mud Logging Engineering, 2017, 28(2): 1–3. doi: 10.3969/j.issn.1672-9803.2017.02.001
    [20]
    王志战. 录井技术与方法的创新机制[J]. 录井工程,2017,28(3):1–5. doi: 10.3969/j.issn.1672-9803.2017.03.001

    WANG Zhizhan. Innovation mechanism of surface logging technology and method[J]. Mud Logging Engineering, 2017, 28(3): 1–5. doi: 10.3969/j.issn.1672-9803.2017.03.001
    [21]
    WANG Zhizhan, QIN Liming, LU Huangsheng, et al. Two dimentional NMR analysis and evaluation of oil or gas shale[R]. SPE 176184, 2015.
    [22]
    王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学,2020,31(8):1178–1184.

    WANG Zhizhan. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178–1184.
    [23]
    LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi: 10.1016/j.marpetgeo.2020.104311
    [24]
    FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55–62. doi: 10.1016/j.petrol.2015.11.006
    [25]
    HAN J, DAIGLE H, XIAO T, et al. A comparison of clustering algorithms applied to fluid characterization using NMR T1-T2 maps of shale[J]. Computers and Geosciences, 2019, 126: 52–61. doi: 10.1016/j.cageo.2019.01.021
    [26]
    SUN Yong, ZHAI Cheng, XU Jizhao, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel, 2020, 262: 116574. doi: 10.1016/j.fuel.2019.116574
    [27]
    KAUSIK R, FELLAH K, RYLANDER E, et al. NMR Relaxometry in shale and implications for logging[J]. Petrophysics: the SPWLA Journal of Formation Evaluation and Reservoir Description, 2016, 57(4): 339–350.
    [28]
    MA Xinhua, WANG Hongyan, ZHOU Shangwen, et al. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103674. doi: 10.1016/j.jngse.2020.103674
    [29]
    KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167–177. doi: 10.1016/j.fuel.2018.07.100
    [30]
    严伟丽,高楚桥,赵彬,等. 基于气测录井资料的气油比定量计算方法[J]. 科学技术与工程,2020,20(23):9287–9292.

    YAN Weili, GAO Chuqiao, ZHAO Bin, et al. Quantitative calculation method of gas-oil ratio in gas logging data[J]. Science Technology and Engineering, 2020, 20(23): 9287–9292.
    [31]
    张新华,邹筱春,赵红艳,等. 利用X荧光元素录井资料评价页岩脆性的新方法[J]. 石油钻探技术,2012,40(5):92–95.

    ZHANG Xinhua, ZOU Xiaochun, ZHAO Hongyan, et al. A new method of evaluation shale brittleness using X-ray fluorescence element logging data[J]. Petroleum Drilling Techniques, 2012, 40(5): 92–95.
    [32]
    王志战,朱祖扬,李丰波,等. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术,2020,48(6):109–115. doi: 10.11911/syztjs.2020141

    WANG Zhizhan, ZHU Zuyang, LI Fengbo, et al. Development and testing of a portable acoustic logging system on cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109–115. doi: 10.11911/syztjs.2020141
    [33]
    SY/T 6937—2013 多极子阵列声波测井资料处理与解释规范[S].

    SY/T 6937—2013 Specifications for the processing and interpretation of logging data of multipole array acoustic[S].
    [34]
    SY/T 5623—2009 地层压力预(监)测方法[S].

    SY/T 5623—2009 Prediction and detection methods of formation pressure[S].
    [35]
    SY/T 5940—2019 储层参数的测井计算方法[S].

    SY/T 5940—2019 Log computational method for parameters of reservoir[S].
    [36]
    Q/SH 0275.1—2009 钻井地质环境因素描述技术规范 第1部分: 岩石力学参数求取技术方法[S].

    Q/SH 0275.1—2009 Technical specifications for geologic environmental factor description in drilling: part 1: technical procedures for acquisition of rock mechanic parameters[S].
    [37]
    Q/SH 0275.2—2009 钻井地质环境因素描述技术规定 第2部分: 岩石可钻性求取技术方法[S].

    Q/SH 0275.2—2009 Technical specifications for geologic environmental factor description in drilling: part 2: technical procedures for acquisition of rock drillability[S].
    [38]
    HERRON M M, LOAN M E, CHARSKY A M, et al. Kerogen content and maturity, mineralogy and clay typing from drifts analysis of cuttings or core[J]. Petrophysics: the SPWLA Journal of Formation Evaluation and Reservoir Description, 2014, 55(5): 435–446.
    [39]
    LOAN M E L, HERRON M M. CRADDOCK P, et al. Rapid quantification of mineralogy, organic matter, and thermal maturity of cuttings with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): a Permian Basin case study[R]. URTEC 2671423, 2017.
    [40]
    LI Sanguo, XIAO Lizhi, LI Xin, et al. A novel NMR instrument for real time drilling fluid analysis[J]. Microporous and Mesoporous Materials, 2018, 269: 138–141. doi: 10.1016/j.micromeso.2017.08.038
    [41]
    WANG Zhizhan, QIN Liming, LU Huangsheng, et al. Determining the fluorescent components in drilling fluid by using NMR method[J]. Chinese Journal of Geochemistry, 2015, 34(3): 410–415. doi: 10.1007/s11631-015-0049-3
    [42]
    王志战,魏杨旭,秦黎明,等. 油基钻井液条件下油层的NMR判识方法[J]. 波谱学杂志,2015,32(3):481–488. doi: 10.11938/cjmr20150309

    WANG Zhizhan, WEI Yangxu, QIN Liming, et al. Oil layer identification by NMR with the use of oil-based drilling fluid[J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 481–488. doi: 10.11938/cjmr20150309
    [43]
    罗发强,王志战,张元春,等. 复杂地层岩石力学参数实时求取方法:以塔里木盆地巴楚隆起为例[J]. 科学技术与工程,2020,20(17):6842–6847. doi: 10.3969/j.issn.1671-1815.2020.17.021

    LUO Faqiang, WANG Zhizhan, ZHANG Yuanchun, et al. The real-time calculation methods of rock mechanics parameters in complex strata: a case study of the Bachu Uplift in Tarim Basin[J]. Science Technology and Engineering, 2020, 20(17): 6842–6847. doi: 10.3969/j.issn.1671-1815.2020.17.021
    [44]
    RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
    [45]
    KUMAR V, SONDERGELD C H., RAI C S. Nano to macro mechanical characterization of shale[R]. SPE 159804, 2012.
    [46]
    路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234.

    LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
  • Related Articles

    [1]ZHOU Zhou, LI Ben, GENG Yudi, XIAO Rui. Prediction Model of Rock Mechanics Parameters in Ultra-DeepFractured Formations Based on Big Data[J]. Petroleum Drilling Techniques, 2024, 52(5): 91-96. DOI: 10.11911/syztjs.2024084
    [2]WANG Zhizhan, HAN Yujiao, JIN Yunyun, WANG Yong, LUO Xi, YAN Yongxin. Nuclear Magnetic Resonance Evaluation Method of Shale Oil with Medium and Low Maturity in Biyang Sag[J]. Petroleum Drilling Techniques, 2023, 51(5): 58-65. DOI: 10.11911/syztjs.2023094
    [3]XIAO Lizhi, LUO Sihui, LONG Zhihao. The Course of Development and the Future of Wellsite NMR Technologies and Their Applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140-148. DOI: 10.11911/syztjs.2023034
    [4]GUO Jiangfeng, XU Chenyu, XIE Ranhong, WANG Shuai, LIU Jilong, WANG Meng. Study on the NMR Response Mechanism of Micro-Fractured Tight Sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121-128. DOI: 10.11911/syztjs.2022091
    [5]HUANG Jiagen, WANG Haige, JI Guodong, ZHAO Fei, MING Ruiqing, HAO Yalong. The Rock Breaking Mechanism of Ultrasonic High Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2018, 46(4): 23-29. DOI: 10.11911/syztjs.2018097
    [6]Gui Junchuan, Xia Hongquan, Zou Yong, Gong Haohao. A New Method to Calculate the Gas Saturation of the Sand and Shale Formations Based on Logging Rock Mechanics Parameters[J]. Petroleum Drilling Techniques, 2015, 43(1): 82-87. DOI: 10.11911/syztjs.201501014
    [7]Zheng Deshuai, Zhang Huawei, Zhu Ye, Sun Wenjun. Affecting Mechanism of Rock Mechanical Property on Well Trajectory[J]. Petroleum Drilling Techniques, 2014, 42(3): 45-49. DOI: 10.3969/j.issn.1001-0890.2014.03.009
    [8]Li Wei, Yan Tie, Zhang Zhichao, Li Lianqun. Rock Response Mechanism and Rock Breaking Test Analysis for Impact of High Frequency Vibration Drilling Tool[J]. Petroleum Drilling Techniques, 2013, 41(6): 25-28. DOI: 10.3969/j.issn.1001-0890.2013.06.005
    [9]Ma Yue, Chen Mian, Jin Yan, Hou Bing, Yang Pei. Mechanism of Effect of Relative Humidity on Creep Behavior of Gypsum Rock[J]. Petroleum Drilling Techniques, 2013, 41(4): 19-22. DOI: 10.3969/j.issn.1001-0890.2013.04.005
    [10]Li Qinghui, Chen Mian, Jin Yan, Hou Bing, Zhang Jiazhen. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22. DOI: 10.3969/j.issn.1001-0890.2012.04.004
  • Cited by

    Periodical cited type(14)

    1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 .
    2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 .
    3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 .
    4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 .
    5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
    6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 .
    7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 .
    8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 .
    9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 .
    10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 .
    11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
    12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
    13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 .
    14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (659) PDF downloads (141) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return