ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. DOI: 10.11911/syztjs.2020140
Citation: ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. DOI: 10.11911/syztjs.2020140

Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin

More Information
  • Received Date: June 18, 2020
  • Revised Date: September 27, 2020
  • Available Online: October 21, 2020
  • Logging evaluation was carried out to solve the problems of high levels of heterogeneity, complexity with respect to typing reservoir spaces, and difficulty in evaluating the reservoir effectiveness in carbonate reservoirs in the Maokou Formation, Sichuan Basin. By analyzing the pore structure of the fractured-vuggy reservoirs of the Maokou Formation in the working area, the reservoir space was classified based on the tri-porosity model and the relationship between bond index and total porosity, connected fracture-vug porosity and isolated fracture-vug porosity. The information was then combined with core calibration logging, the mean value and variance of apparent porosity spectrum and apparent formation water resistivity spectrum extracted from micro-resistivity scan imaging logging data, and fracture porosity and other sensitive parameters that reflect pores, vugs and fractures, as well as the data from well testing. Integrating above information, and evaluation standard for reservoir effectiveness was established as follows: For porous and vuggy reservoirs, the mean value of electric imaging apparent porosity spectrum of Class I reservoir is greater than 1.9 and the corresponding variance is greater than 1.2, and those of Class II reservoirs are greater than 1.7 and 0.9, respectively. For fractured reservoirs, the fracture porosity of Class I reservoir is greater than 0.30 while that of Class II reservoir is between 0.05 and 0.30. Enhancing the connectivity of fractures can obviously improve the effectiveness of the reservoir. For the porous-fracture and vuggy-fracture reservoirs, the mean value of apparent formation water resistivity spectrum of Class I reservoir is greater than 700, and the variance is greater than 300, and those of Class II reservoirs are 500–700 and 100–300, respectively. According to the evaluation standard, a secondary interpretation of 20 exploration wells in the working area was carried out, which effectively improved the interpretation coincidence rate of fractured-vuggy reservoirs, and resulted in achieving a good application effect.
  • [1]
    陈维涛,周瑶琪,马永生,等. 关于龙门山地区东吴运动的存在及其性质的认识[J]. 地质学报, 2007, 81(11): 1518–1525. doi: 10.3321/j.issn:0001-5717.2007.11.006

    CHEN Weitao, ZHOU Yaoqi, MA Yongsheng, et al. The knowledge on the existence and nature of the dongwu movement in the Longmen Mountain Area[J]. Acta Geologica Sinica, 2007, 81(11): 1518–1525. doi: 10.3321/j.issn:0001-5717.2007.11.006
    [2]
    朱传庆,徐明,袁玉松,等. 峨眉山玄武岩喷发在四川盆地的地热学响应[J]. 科学通报, 2010, 55(6): 474–482.

    ZHU Chuanqing, XU Ming, YUAN Yusong, et al. Geothermal response of Emeishan basalt eruption in Sichuan Basin[J]. Science Bulletin, 2010, 55(6): 474–482.
    [3]
    梁定益,聂泽同,宋志敏. 扬子西缘东吴伸展运动[J]. 地球科学——中国地质大学学报, 1994, 19(4): 443–452.

    LIANG Dingyi, NIE Zetong, SONG Zhimin. Extensional Dongwu movement in western margin of Yangtze region[J]. Earth Science—Journal of China University of Geosciences, 1994, 19(4): 443–452.
    [4]
    何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学——中国地质大学学报, 2005, 30(1): 89–96.

    HE Bin, XU Yigang, WANG Yamei, et al. Nature of the Dongwu Movement and its temporal and spatial evolution[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(1): 89–96.
    [5]
    陈更生,岳宏. 四川盆地川西南地区下二叠统气藏类型及有效缝洞分布规律[J]. 天然气工业, 1995, 15(6): 10–13.

    CHEN Gengsheng, YUE Hong. Gas reservoir types and effective fracture-vug distribution laws of lower permian series in the southwest area of Sichuan Basin[J]. Natural Gas Industry, 1995, 15(6): 10–13.
    [6]
    颜其彬,庞雯. 川南茅口灰岩岩溶特征与油气关系[J]. 西南石油学院学报, 1993, 15(3): 11–16.

    YAN Qibin, PANG Wen. Relationship between oil/gas accumulaition and karst features of Maokou formation in Luzhou area, Sichuan[J]. Journal of Southwest Petroleum Institute, 1993, 15(3): 11–16.
    [7]
    江青春,胡素云,汪泽成,等. 四川盆地茅口组风化壳岩溶古地貌及勘探选区[J]. 石油学报, 2012, 33(6): 949–960. doi: 10.7623/syxb201206005

    JIANG Qingchun, HU Suyun, WANG Zecheng, et al. Paleokarst landform of the weathering crust of middle permian Maokou formation in Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2012, 33(6): 949–960. doi: 10.7623/syxb201206005
    [8]
    郑荣才,胡忠贵,冯青平,等. 川东北地区长兴组白云岩储层的成因研究[J]. 矿物岩石, 2007, 27(4): 78–84. doi: 10.3969/j.issn.1001-6872.2007.04.013

    ZHENG Rongcai, HU Zhonggui, FENG Qingping, et al. Genesis of dolomite reservoir of the Changxing Formation of upper permian, northeast Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(4): 78–84. doi: 10.3969/j.issn.1001-6872.2007.04.013
    [9]
    田瀚,杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545–552. doi: 10.11720/wtyht.2015.3.18

    TIAN Han, YANG Min. The logging evaluation methods for fractured-vuggy carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 545–552. doi: 10.11720/wtyht.2015.3.18
    [10]
    张欣, 尚锁贵, 张国强, 等.基于多资料的砂砾岩储层有效性精细评价[J].石油钻采工艺, 2018, 40(增刊1): 70–72, 83.

    ZHANG Xin, SHANG Suogui, ZHANG Guoqiang, et al. Fine evaluation on the effectiveness of glutenite reservoirs based on diverse data[J].Oil Drilling & Production Technology, 2018, 40(supplement 1): 70–72, 83.
    [11]
    刘伟,张晋言,张文娇,等. 基于电成像测井资料的砂砾岩储层有效性分类评价方法[J]. 石油钻探技术, 2016, 44(4): 114–119.

    LIU Wei,ZHANG Jinyan,ZHANG Wenjiao,et al. An evaluation method for glutenite reservoir effectiveness classification based on electrical imaging logging data[J]. Petroleum Drilling Techniques, 2016, 44(4): 114–119.
    [12]
    王亮,司马立强,谢兵,等. 龙岗地区雷口坡组复杂碳酸盐岩储层有效性评价[J]. 特种油气藏, 2011, 18(5): 37–40.

    WANG Liang,SIMA Liqiang,XIE Bing,et al. Effectiveness evaluation of the complex carbonate reservoir in the Leikoupo Formation of Longgang Area[J]. Special Oil & Gas Reservoirs, 2011, 18(5): 37–40.
    [13]
    耿斌,胡心红. 孔隙结构研究在低渗透储层有效性评价中的应用[J]. 断块油气田, 2011, 18(2): 187–190.

    GENG Bin, HU Xinhong. Application of pore structure study in effectiveness evaluation of low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2011, 18(2): 187–190.
    [14]
    ROBERTO A F, AGUILERA R. A triple porosity model for petrophysical analysis of naturally fractured reservoir[J]. Petrophysics, 2004, 45(2): 157–166.
    [15]
    AL-GHAMDI A, CHEN B, BEHMANESH H, et al. An improved tripe-porosity model for evaluation of naturally fractured reservoirs[R]. SPE 132879, 2010.
    [16]
    田瀚,沈安江,张建勇,等. 一种缝洞型碳酸盐岩储层胶结指数m计算新方法[J]. 地球物理学报, 2019, 62(6): 2276–2285. doi: 10.6038/cjg2019L0633

    TIAN Han, SHEN Anjiang, ZHANG Jianyong, et al. A new method for calculating the cementation index m of fracture cave carbonate reservoir[J]. Chinese Journal of Geophysics, 2019, 62(6): 2276–2285. doi: 10.6038/cjg2019L0633
    [17]
    曹毅民,章成广,杨维英,等. 裂缝性储层电成像测井孔隙度定量评价方法研究[J]. 测井技术, 2006, 30(3): 237–239. doi: 10.3969/j.issn.1004-1338.2006.03.015

    CAO Yimin, ZHANG Chengguang, YANG Weiying, et al. Fractured reservoir porosity quantitative evaluation using electric imaging logging data[J]. Well Logging Technology, 2006, 30(3): 237–239. doi: 10.3969/j.issn.1004-1338.2006.03.015
    [18]
    FU Haicheng, ZOU Changchun, LI Ning, et al. A quantitative approach to characterize porosity structure from borehole electrical images and its application in a carbonate reservoir in the Tazhong Area, Tarim Basin[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(1): 18–23.
    [19]
    TYAGI A K, BHADURI A. Porosity analysis using borehole electrical images in carbonate reservoirs[R]. SPWLA-2002-KK, 2002.
    [20]
    李宁,肖承文,伍丽红,等. 复杂碳酸盐岩储层测井评价: 中国的创新与发展[J]. 测井技术, 2014, 38(1): 1–10.

    LI Ning, XIAO Chengwen, WU Lihong, et al. The innovation and development of log evaluation for complex carbonate reservoir in China[J]. Well Logging Technology, 2014, 38(1): 1–10.
    [21]
    王晓畅,李军,张松扬,等. 基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 51–56.

    WANG Xiaochang, LI Jun, ZHANG Songyang, et al. Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 51–56.
    [22]
    李庆峰,李晓峰,刘岩. 白云岩储层电成像视地层水电阻率流体识别技术[J]. 测井技术, 2017, 41(4): 412–415.

    LI Qingfeng, LI Xiaofeng, LIU Yan. Fluid identification technique based on imaging apparent formation water resistivity in dolomite reservoirs[J]. Well Logging Technology, 2017, 41(4): 412–415.
    [23]
    李善军,汪涵明,肖承文,等. 碳酸盐岩地层中裂缝孔隙度的定量解释[J]. 测井技术, 1997, 21(3): 205–214.

    LI Shanjun, WANG Hanming, XIAO Chengwen, et al. Quantitative interpretation of fracture porosity in carbonates[J]. Well Logging Technology, 1997, 21(3): 205–214.
    [24]
    张程恩,潘保芝,张晓峰,等. FMI测井资料在非均质储层评价中的应用[J]. 石油物探, 2011, 50(6): 630–633. doi: 10.3969/j.issn.1000-1441.2011.06.015

    ZHANG Cheng’en, PAN Baozhi, ZHANG Xiaofeng, et al. Application of FMI logging data in evaluation of heterogeneous reservoir[J]. Geophysical Prospecting for Petroleum, 2011, 50(6): 630–633. doi: 10.3969/j.issn.1000-1441.2011.06.015
    [25]
    张晓峰, 潘保芝. 储层裂缝发育等级划分研究[J]. 测井技术, 2013, 37(4): 393–396. doi: 10.3969/j.issn.1004-1338.2013.04.011

    ZHANG Xiaofeng, PAN Baozhi. Study on classification of fracture growth[J]. Well Logging Technology, 2013, 37(4): 393–396. doi: 10.3969/j.issn.1004-1338.2013.04.011
  • Cited by

    Periodical cited type(7)

    1. 蒋振新,李军,郭勇,吴德胜,时培忠,杨宏伟,张更. 井下双梯度控压钻井井筒多相流动规律. 断块油气田. 2024(05): 936-944 .
    2. 鲁义攀,魏勇,陈强,刘国权,刘杰. 基于热传导时域积分的井下流量测量方法. 石油钻探技术. 2023(01): 106-114 . 本站查看
    3. 王江帅,李牧,翟文宝,何岩峰,邓嵩. 气侵条件下深水变梯度控压钻井泥浆池增量变化规律. 常州大学学报(自然科学版). 2023(04): 87-92 .
    4. 祝效华,冉亮,敬俊,孙汉文,王成涛,张一鹏. 隔水管充气双梯度钻井充气水深和充气速率研究. 石油钻探技术. 2022(01): 22-29 . 本站查看
    5. 姜瑞海,崔云峰,张晨,陈勋. 页岩气偏心水平井气侵期间岩屑运移数值模拟. 科技和产业. 2022(06): 283-289 .
    6. 张洁,汤明,蒋振新,甘一风,曾德智. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型. 特种油气藏. 2021(02): 156-162 .
    7. 王江帅,李军,何岩峰,柳贡慧,邓嵩,杨宏伟,宋学锋,杨青,夏顺雷. 变梯度控压钻井井控过程中井口回压变化规律. 石油学报. 2021(11): 1499-1505 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (581) PDF downloads (78) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return