ZHANG Jinhong. Current Status and Outlook for the Development of Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9-17. DOI: 10.11911/syztjs.2019061
Citation: ZHANG Jinhong. Current Status and Outlook for the Development of Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9-17. DOI: 10.11911/syztjs.2019061

Current Status and Outlook for the Development of Sinopec’s Petroleum Engineering Technologies

More Information
  • Received Date: March 13, 2019
  • Available Online: May 09, 2019
  • Petroleum engineering technology is the means to realize oil/gas exploration and development and also an important momentum for pushing the development of oil and gas industry. In order to achieve efficient exploration and development of complex oil/gas reservoirs and tap the remaining oil/gas and to meet urgent demands for petroleum engineering technologies, Sinopec has carried out technology research and development in fields of quick drilling and completion, wireline logging and mudlogging for complex formations, special formation stimulation, and also engaged in the development of matching equipment. These achievements provided strong support for the oil/gas exploration and development in over 70 basins and over 500 blocks, as well as for the oilfield technical service market exploration in nearly 40 countries. This paper presents the current development status of Sinopec’s petroleum engineering technologies, and highlights technical breakthroughs in drilling and completion, wireline logging, mudlogging and reservoir stimulation made by Sinopec. Considering the development goals of Sinopec petroleum engineering technologies and new demand for technologies, it also proposes to accelerate the development of core technologies and further improve technologies for ultra-deep oil/gas reservoirs, shale oil/gas reservoirs, tight oil/gas reservoirs, mature oilfield in east China,and give full attention to the technology esearch and development for unconventional energies and deep-water oil and gas.All these efforts will help to enhance the integrated service capacity of Sinopec.

  • [1]
    马永生, 蔡勋育, 赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考: 以中国石化油气勘探为例[J]. 石油钻探技术, 2016, 44(2): 1–9.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
    [2]
    路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–13.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–13.
    [3]
    刘彪, 潘丽娟, 易浩, 等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺, 2016, 38(3): 296–301.

    LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301.
    [4]
    蒋祖军, 肖国益, 李群生. 川西深井提高钻井速度配套技术[J]. 石油钻探技术, 2010, 38(4): 30–34.

    JIANG Zujun, XIAO Guoyi, LI Qunsheng. Technology to increase deep well drilling speed in Western Sichuan[J]. Petroleum Drilling Techniques, 2010, 38(4): 30–34.
    [5]
    闫光庆, 张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001
    [6]
    张金成, 牛新明, 张进双. 超深井钻井技术研究及工业化应用[J]. 探矿工程: 岩土钻掘工程, 2015, 42(1): 3–11.

    ZHANG Jincheng, NIU Xinming, ZHANG Jinshuang. Research and industrial application of drilling technology of ultra-deep wells[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2015, 42(1): 3–11.
    [7]
    赵小祥, 邢树宾, 毛迪, 等. 沙特MTLH-1井全过程欠平衡钻井技术[J]. 石油钻探技术, 2010, 38(5): 60–64.

    ZHAO Xiaoxiang, XING Shubin, MAO Di, et al. Whole process underbalanced drilling technology in Well MTLH-1 in Saudi Arabia[J]. Petroleum Drilling Techniques, 2010, 38(5): 60–64.
    [8]
    许军富, 赵洪山, 于海叶, 等. 空气锤钻井技术在哈深201井火成岩地层的应用[J]. 石油钻采工艺, 2017, 39(6): 683–687.

    XU Junfu, ZHAO Hongshan, YU Haiye, et al. Application of air hammer drilling technology in the igneous strata of Well Hashen 201[J]. Oil Drilling & Production Technology, 2017, 39(6): 683–687.
    [9]
    孙泽秋, 金业权, 孙文俊, 等. 用于精细控压钻井的电动节流压力控制系统设计[J]. 石油矿场机械, 2013, 42(4): 22–25. doi: 10.3969/j.issn.1001-3482.2013.04.006

    SUN Zeqiu, JIN Yequan, SUN Wenjun, et al. Electric throttle pressure drilling control system research for the precise managed pressure drilling[J]. Oil Field Equipment, 2013, 42(4): 22–25. doi: 10.3969/j.issn.1001-3482.2013.04.006
    [10]
    瞿佳, 李真祥. 元坝地区复杂深井新型井身结构与应用[J]. 钻采工艺, 2012, 35(5): 40–44. doi: 10.3969/J.ISSN.1006-768X.2012.05.12

    QU Jia, LI Zhenxiang. Design and application of the new casing program for complicated deep well in Yuanba Area[J]. Drilling & Production Technology, 2012, 35(5): 40–44. doi: 10.3969/J.ISSN.1006-768X.2012.05.12
    [11]
    聂云飞, 吴仲华, 张辉, 等. 五级分支井技术在河3–支平1井的应用[J]. 石油钻采工艺, 2012, 34(2): 13–16. doi: 10.3969/j.issn.1000-7393.2012.02.004

    NIE Yunfei, WU Zhonghua, ZHANG Hui, et al. 5 levels multi-lateral technology application in Well He3-zp1[J]. Oil Drilling & Production Technology, 2012, 34(2): 13–16. doi: 10.3969/j.issn.1000-7393.2012.02.004
    [12]
    唐波, 唐志军, 耿应春, 等. 国内低渗透油气田高效开发钻完井关键技术发展现状[J]. 天然气工业, 2013, 33(2): 65–70.

    TANG Bo, TANG Zhijun, GENG Yingchun, et al. Drilling and completion technologies for efficient exploitation of low-permeability oil & gas fields in China: a state-of-the-art review[J]. Natural Gas Industry, 2013, 33(2): 65–70.
    [13]
    唐志军, 周金柱, 赵洪山, 等. 元坝气田超深水平井随钻测量与控制技术[J]. 石油钻采工艺, 2015, 37(2): 54–57.

    TANG Zhijun, ZHOU Jinzhu, ZHAO Hongshan, et al. Measurement and control technology while drilling for ultra-deep horizontal wells in Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2015, 37(2): 54–57.
    [14]
    王智锋. MRC近钻头地质导向系统总体设计与应用[J]. 石油钻采工艺, 2015, 37(4): 1–4.

    WANG Zhifeng. Overall design and application of MRC near-bit geosteering system[J]. Oil Drilling & Production Technology, 2015, 37(4): 1–4.
    [15]
    王中华. 国内外超高温高密度钻井液技术现状与发展趋势[J]. 石油钻探技术, 2011, 39(2): 1–7. doi: 10.3969/j.issn.1001-0890.2011.02.001

    WANG Zhonghua. Status and development trend of ultra-high temperature and high density drilling fluid at home and abroad[J]. Petroleum Drilling Techniques, 2011, 39(2): 1–7. doi: 10.3969/j.issn.1001-0890.2011.02.001
    [16]
    于雷, 张敬辉, 李公让, 等. 低活度强抑制封堵钻井液研究与应用[J]. 石油钻探技术, 2018, 46(1): 1–5.

    YU Lei, ZHANG Jinghui, LI Gongrang, et al. Research and application of plugging drilling fluid with low-activity and high inhibition properties[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–5.
    [17]
    谢俊, 司西强, 雷祖猛, 等. 类油基水基钻井液体系研究与应用[J]. 钻井液与完井液, 2017, 34(4): 26–31. doi: 10.3969/j.issn.1001-5620.2017.04.005

    XIE Jun, SI Xiqiang, LEI Zumeng, et al. Research and application of OBM-like water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 26–31. doi: 10.3969/j.issn.1001-5620.2017.04.005
    [18]
    林永学, 甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术, 2019, 47(2): 1–11.

    LIN Yongxue, ZHEN Jianwu. Research and application of deep shale gas water based drilling fluid technology[J]. Petroleum Drilling Techniques, 2019, 47(2): 1–11.
    [19]
    林永学,王显光,李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术, 2016, 44(2): 28–33.

    LIN Yongxue, WANG Xianguang, LI Rongfu. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 28–33.
    [20]
    王毅, 彭志刚, 徐浩然. 水平井复合水泥浆体系研究及应用[J]. 钻采工艺, 2011, 34(2): 103–105. doi: 10.3969/j.issn.1006-768X.2011.02.033

    WANG Yi, PENG Zhigang, XU Haoran. Research and application of composite cement slurry system for horizontal wells[J]. Drilling & Production Technology, 2011, 34(2): 103–105. doi: 10.3969/j.issn.1006-768X.2011.02.033
    [21]
    刘学鹏, 张明昌, 冯明慧, 等. 复合空心微珠低密度水泥浆的研究与应用[J]. 石油钻采工艺, 2014, 36(6): 39–41.

    LIU Xuepeng, ZHANG Mingchang, FENG Minghui, et al. Research and application of composite hollow microbead low density cement slurry[J]. Oil Drilling & Production Technology, 2014, 36(6): 39–41.
    [22]
    马明新, 杨海波, 徐鑫. 液压扶正器在胜利油田非常规油井固井中的应用[J]. 石油钻探技术, 2014, 42(1): 71–74. doi: 10.3969/j.issn.1001-0890.2014.01.014

    MA Mingxin, YANG Haibo, XU Xin. Application of hydraulic centralizer in unconventional oil well cementing of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(1): 71–74. doi: 10.3969/j.issn.1001-0890.2014.01.014
    [23]
    马清明, 江正清, 董怀荣. 海洋钻井平台钻柱自动化处理防碰撞控制研究[J]. 石油矿场机械, 2014, 43(7): 1–4.

    MA Qingming, JIANG Zhengqing, DONG Huairong. Research on anti-collision of drill strings automatic treatment system for offshore drilling platform[J]. Oil Field Equipment, 2014, 43(7): 1–4.
    [24]
    明瑞卿, 张时中, 王海涛, 等. 国内外水力振荡器的研究现状及展望[J]. 石油钻探技术, 2015, 43(5): 116–122.

    MING Ruiqing, ZHANG Shizhong, WANG Haitao, et al. Research status and prospect of hydraulic oscillator worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116–122.
    [25]
    赵建军, 崔晓杰, 赵晨熙, 等. 高频液力扭力冲击器设计与试验研究[J]. 石油化工应用, 2018, 37(2): 5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

    ZHAO Jianjun, CUI Xiaojie, ZHAO Chenxi, et al. Design and experimental research on high frequency hydraulic torsional impactor[J]. Petrochemical Industry Application, 2018, 37(2): 5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002
    [26]
    任红, 裴学良, 吴仲华, 等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术, 2018, 46(3): 44–48.

    REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.
    [27]
    裴学良, 任红, 吴仲华, 等. 天然气水合物岩心带压转移装置研制与现场试验[J]. 石油钻探技术, 2018, 46(3): 49–52.

    PEI Xueliang, REN Hong, WU Zhonghua, et al. Research and field test of a pressure-stabilizing transfer device for natural gas hydrate samples[J]. Petroleum Drilling Techniques, 2018, 46(3): 49–52.
    [28]
    韩来聚. 胜利油田钻井完井技术新进展及发展建议[J]. 石油钻探技术, 2017, 45(1): 1–9.

    HAN Laiju. The latest progress and suggestions of drilling and completion techniques in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(1): 1–9.
    [29]
    赵旭. 水平井变密度射孔技术研究[J]. 测井技术, 2016, 40(1): 122–126.

    ZHAO Xu. Research on variable density perforating technology of horizontal well[J]. Well Logging Technology, 2016, 40(1): 122–126.
    [30]
    任闽燕, 田玉刚, 张峰, 等. 胜利油田水平井射孔参数优化技术[J]. 测井技术, 2013, 37(4): 441–444. doi: 10.3969/j.issn.1004-1338.2013.04.021

    REN Minyan, TIAN Yugang, ZHANG Feng, et al. Perforating parameter optimization technique for horizontal well in Shengli Oilfield[J]. Well Logging Technology, 2013, 37(4): 441–444. doi: 10.3969/j.issn.1004-1338.2013.04.021
    [31]
    邹顺良, 杨家祥, 胡中桂, 等. FSI产出剖面测井技术在涪陵页岩气田的应用[J]. 测井技术, 2016, 40(2): 209–213.

    ZOU Shunliang, YANG Jiaxiang, HU Zhonggui, et al. Application of FSI production profile logging technique in Fuling Shale Gas Field[J]. Well Logging Technology, 2016, 40(2): 209–213.
    [32]
    朱留方, 臧德福, 沈永进, 等. 瞬变电磁测井原理研究Ⅵ: 过套管电阻率[J]. 测井技术, 2016, 40(1): 28–32.

    ZHU Liufang, ZANG Defu, SHEN Yongjin, et al. Theory of transient electromagnetic logging Ⅵ: through-casing resistivity[J]. Well Logging Technology, 2016, 40(1): 28–32.
    [33]
    臧德福, 郭红旗, 晁永胜, 等. 井间电磁成像测井系统分析与研究[J]. 测井技术, 2013, 37(2): 177–182. doi: 10.3969/j.issn.1004-1338.2013.02.013

    ZANG Defu, GUO Hongqi, CHAO Yongsheng, et al. Analysis and research of cross-well electromagnetic imaging logging system[J]. Well Logging Technology, 2013, 37(2): 177–182. doi: 10.3969/j.issn.1004-1338.2013.02.013
    [34]
    李一超, 王志战, 秦黎明, 等. 水平井地质导向录井关键技术[J]. 石油勘探与开发, 2012, 39(5): 620–625.

    LI Yichao, WANG Zhizhan, QIN Liming, et al. Key surface logging technologies in horizontal geosteering drilling[J]. Petroleum Exploration and Development, 2012, 39(5): 620–625.
    [35]
    陆黄生. 综合录井在钻井工程中的应用现状与发展思考[J]. 石油钻探技术, 2011, 39(4): 1–6. doi: 10.3969/j.issn.1001-0890.2011.04.001

    LU Huangsheng. Current technology situation and developing trend of mud logging's application in drilling engineering[J]. Petroleum Drilling Techniques, 2011, 39(4): 1–6. doi: 10.3969/j.issn.1001-0890.2011.04.001
    [36]
    薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004

    XUE Chengjin. Technical advance and development proposals of shale gas fracturing[J]. Petroleum Drilling Techniques, 2011, 39(3): 24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004
    [37]
    赵传伟, 李云, 李国锋, 等. 基于Taguchi方法的计数式全通径压裂滑套优化设计[J]. 石油钻探技术, 2017, 45(1): 97–103.

    ZHAO Chuanwei, LI Yun, LI Guofeng, et al. Design optimization of full bore stimulation sleeves with balldrop counting using the Taguchi method[J]. Petroleum Drilling Techniques, 2017, 45(1): 97–103.
    [38]
    何同, 彭汉修, 吴晓明, 等. 全复合材料易钻桥塞研制与应用[J]. 特种油气藏, 2017, 24(4): 166–170. doi: 10.3969/j.issn.1006-6535.2017.04.032

    HE Tong, PENG Hanxiu, WU Xiaoming, et al. Development and application of drillable bridge plug made by composite materials[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 166–170. doi: 10.3969/j.issn.1006-6535.2017.04.032
    [39]
    魏辽, 马兰荣, 朱敏涛, 等. 大通径桥塞压裂用可溶解球研制及性能评价[J]. 石油钻探技术, 2016, 44(1): 90–94.

    WEI Liao, MA Lanrong, ZHU Mintao, et al. Development and performance evaluation of dissolvable balls for large borehole bridge plug fracturing[J]. Petroleum Drilling Techniques, 2016, 44(1): 90–94.
    [40]
    魏娟明, 刘建坤, 杜凯, 等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术, 2015, 43(1): 27–32.

    WEI Juanming, LIU Jiankun, DU Kai, et al. The development and application of inverse emulsified friction reducer and slickwater system[J]. Petroleum Drilling Techniques, 2015, 43(1): 27–32.
  • Related Articles

    [1]ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, BI Yantao. New Progress and Prospects for Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149-158. DOI: 10.11911/syztjs.2023021
    [2]WANG Zhizhan. Thoughts for New Progress and Development Directions of Sinopec’s Surface Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124-133. DOI: 10.11911/syztjs.2023027
    [3]JIANG Tingxue, WANG Haitao. The Current Status and Development Suggestions for Sinopec’s Staged Fracturing Technologies of Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14-21. DOI: 10.11911/syztjs.2021071
    [4]ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072
    [5]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [6]MA Kaihua, HOU Lizhong, ZHANG Hongbao. Drilling Completion Technologies of Sinopec Overseas Oilfields: Status Quo of Technology Development Suggestions[J]. Petroleum Drilling Techniques, 2018, 46(5): 1-7. DOI: 10.11911/syztjs.2018128
    [7]LU Baoping, DING Shidong. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. DOI: 10.11911/syztjs.2018001
    [8]MA Yongsheng, CAI Xunyu, ZHAO Peirong. The Support of Petroleum Engineering Technologies in Trends in Oil and Gas Exploration and Development-Case Study on Oil and Gas Exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1-9. DOI: 10.11911/syztjs.201602001
    [9]LI Yang, XUE Zhaojie. Challenges and Development Tendency of Engineering Technology in Oil and Gas Development in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. DOI: 10.11911/syztjs.201601001
    [10]Li Yang. Opportunities and Challenges for Sinopec to Develop Tight Oil Reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(5): 1-6. DOI: 10.11911/syztjs.201505001
  • Cited by

    Periodical cited type(2)

    1. 荆思霖,宋先知,孙一,许争鸣,周蒙蒙. 基于压差法的水平井岩屑床轴向运移规律研究. 石油钻探技术. 2024(01): 54-61 . 本站查看
    2. 耿明亮,王艳萍,邓晓烽,祖也航,李昳. 单颗粒和双颗粒在聚丙烯酰胺溶液中沉降过程的数值模拟. 浙江理工大学学报(自然科学). 2024(05): 674-680 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (4359) PDF downloads (207) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return