Triaxial Compression Test on Synthetic Core Sample with Simulated Hydrate-Bearing Sediments
-
摘要: 天然气水合物是一种洁净、高效、资源量巨大的新型能源,而天然气水合物的力学性质与水合物的钻探、海底地质灾害等密切相关,因此,开发天然气水合物需要了解其力学性质。为此,用覆膜砂烧结成岩样,采用原位合成方式制取不同水合物饱和度的水合物沉积物岩样,利用自主研制的水合物原位测量系统,在不同围压条件下研究了不同水合物饱和度的水合物沉积物岩样的力学性质。结果表明,水合物沉积物岩样的抗压峰值强度随着围压、水合物饱和度的增大而增大,内聚力随着水合物饱和度的增大而增大,而泊松比、内摩擦角不随水合物饱和度变化。根据库伦-摩尔准则并结合试验结果建立了围压、水合物饱和度与含水合物岩样峰值强度的半经验数学模型,可为深水水合物钻探所涉及的水合物强度参数的选取,以及室内试验的理论分析及数值模拟提供一定的支持。Abstract: Natural gas hydrate is a new energy of clean,efficient and large amount of resources.The researches on mechanical properties of hydrate-bearing sediments is closely connected with hydrate drilling,geological hazards and many other aspects.Therefore,the developments of gas hydrate need to know the mechanical properties of the gas hydrate.For this reasons,coated sand in the laboratory was sintered into the test specimen,and then synthetic hydrate-bearing sediments with different saturation were made as the in-situ hydrate.A series of triaxial shear tests were carried out on artificial hydrate bearing sediments with different hydrate saturation and confining pressure.The testing results showed that with the increasing of confining pressure and hydrate saturation,the compressive peak strength was enhanced,and the cohesion also increased,but internal frictional angle and Poisson ratio have no remarkable change.According to the experimental results and Morh-Coulomb Criterion,the semi-empirical mathematical model of the peak strength about different hydrate saturation and confining pressure was established,providing some supports for the selection of strength parameters of hydrate for deep-water hydrate drilling,and for the theoretical analysis and numerical simulation of laboratory experiments.
-
Keywords:
- gas hydrate /
- in-situ synthesis /
- mechanical properties /
- confining pressure /
- saturation /
- mathematical model
-
-
[1] 张文亮,贺艳梅,孙豫红.天然气水合物研究历程及发展趋势[J].断块油气田,2005,12(2):8-10. Zhang Wenliang,He Yanmei,Sun Yuhong.The course of study and the trend of development of natural gas hydrate[J].Fault-Block Oil Gas Field,2005,12(2):8-10. [2] 宁伏龙,蒋国盛,张凌,等.影响含天然气水合物地层井壁稳定性的关键因素分析[J].石油钻探技术,2008,36(3):59-61. Ning Fulong,Jiang Guosheng,Zhang Ling,et al.Analasis of key factors affecting wellbore stability in gas hydrate formations[J].Petroleum Drilling Techniques,2008,36(3):59-61. [3] 白玉湖,李清平,赵颖.参数模型对沉积物中水合物降压分解的影响[J].石油钻探技术,2009,37(6):11-17. Bai Yuhu,Li Qingping,Zhao Ying.The effects of parameter model on the simulation of gas hydrate dissociation in porous media by depressurization[J].Petroleum Drilling Techniques,2009,37(6):11-17. [4] Winters W J,Pecher I A,Waite W F,et al.Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J].American Mineralogist,2004,89(8/9):1221-1227.
[5] Hyodo M,Nakata Y,Yoshimoto N,et al.Shear behavior of methane hydrate bearing sand:proceedings of the Sixteenth International Offshore and Polar Engineering Conference Lisbon,Portugal,July 1-6,2007.
[6] Miyazaki K,Masui A,Sakamoto Y,et al.Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments:Offshore Technology Conference,Houston,Texas,May 3-6,2010.
[7] Lu Xiaobing,Wang Li,Wang Shuyun,et al.Study on the mechanical properties of the tetrahydrofuran hydrate deposit:proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference Vancouver,BC,Canada,July 6-11,2008.
[8] Houghton J T,Ding Y,Griggs D J,et al.Climate change 2001:the scientific basis:contribution of working group I to the third assessment report of the intergovernmental panel on climate change[M].New York:Cambridge University Press,2001.
[9] Dickens,G R.O’Nei J R,Rea D K,et al.Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J].Paleoceanography,1995,10(6):965-997.
[10] Winters W J,Waite W F,Mason D H,et al.Methane gas hydrate effect on sediment acoustic and strength properties[J].Journal of Petroleum Science and Engineering,2007,56(1/2/3):127-135.
[11] Clayton C R I,Priest J A,Best A I.The effects of dissemininated methane hydrate on the dynamic stiffness and damping of a sand [J].Geotechnique,2005,55(6):423-434.
[12] Winters W J,Dallimore S R,Collett T S,et al.Relation between gas hydrate and physical properties at the Mallik2L-38 research well in the Mackenzie Delta[J].Annals New York Academy of Sciences,2000,912:94-100.
[13] 王淑云,鲁晓兵,张旭辉.水合物沉积物力学性质的实验装置和研究进展[J].实验力学,2009,24(5):413-419. Wang Shuyun,Lu Xiaobing,Zhang Xuhui.Advances in the laboratory apparatus and research on mechanical properties of gas hydrate sediment[J].Journal of Experimental Mechanic,2009,24(5):413-419. [14] 任韶然,刘建新,刘义兴,等.多孔介质中甲烷水合物形成与分解实验研究[J].石油学报,2009,30(4):583-587. Ren Shaoran,Liu Jianxin,Liu Yixing,et al.Experimental study on formation and dissociation of methane hydrate in porous media[J].Acta Petrolei Sinica,2009,30(4):583-587. [15] 范德江,杨作升.冲绳海槽天然气水合物的发育与分布[J].石油学报,2004,25(3):11-17. Fan Dejiang,Yang Zuosheng.Development and distribution of natural gas hydrate in the Okinawa Trough[J].Acta Petrolei Sinica,2004,25(3):11-17. [16] 秦积舜,李爱芬.油层物理学[M].东营:石油大学出版社,2004:111-113. Qin Jishun,Li Aifen.Petroleum physics [M].Dongying:Petroleum University Press,2004:111-113. [17] Suess E.The evolution of an idea:from avoiding gas hydrates to actively drilling for them[J].Special Issue of the Joides Journal,2002,28,(1):45-50.
[18] Zhong Y,Rogers R E.Surfactant effects on gas hydrate formation[J].Chemical Engineering Science,2000,55(19):4175-4187.
[19] 楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006:35-37. Lou Yishan,Jin Yequan.Rock mechanics and petroleum engineering[M].Beijing Petroleum Industry Press,2006:35-37. [20] Masui A,Haneda H,Ogata Y,et al.Effect of methane hydrate formation on shear strength of synthetic methane hydrate sediment:proceedings of the Fifeenth (2005) International Offshore and Polar Engineering Seoul,Korea,June 19-24,2005.
计量
- 文章访问数: 2794
- HTML全文浏览量: 76
- PDF下载量: 3260