Evaluation Indices for Filtering Performance of Pump-StopWater Hammer Signals in Field Fracturing
-
摘要:
采用水击压力波监测方法进行压裂诊断时,为了准确评价停泵水击压力波信号滤波算法的性能,针对国内某水平井的实测水击信号及其对滤波结果的实际需求,采用倒谱响应分辨率RC和倒频率峰值信噪比RQSN作为水击信号滤波效果的评价指标,以该指标和滤波效果的同步性为基本依据,根据指标对滤波效果的灵敏性评价滤波指标的可靠程度。研究结果表明, 高频水击信号的RC和RQSN与井场信号滤波效果正相关,且呈现出良好的灵敏性,因此能够采用倒谱响应分辨率和倒频率峰值信噪比来评价矿场压裂停泵水击压力波高频信号的滤波效果。研究结果为现场信号特征分析、滤波算法优化及滤波模型现场应用的有效性评估提供了技术途径。
Abstract:To accurately evaluate the performance of the filtering algorithms for pump-stop water hammer pressure wave signals when water hammer pressure wave monitoring method is used for fracturing diagnosis, the resolution of the cepstrum response RC and the signal-to-noise ratio of the quefrency peak RQSN were adopted as evaluation indices for filtering performance of water hammer signals based on the measured water hammer signal of a horizontal well in China and its actual demand for filtering results. Based on the synchronization of the indices and the filtering performance, the reliability of the filtering indices was evaluated according to the sensitivity of the indices to the filtering performance. The results show a positive correlation between the RC and RQSN of the high-frequency water hammer signals and the filtering performance of the well-site signals, showing good sensitivity. Therefore, RC and RQSN can be used to evaluate the filtering performance of the pump-stop water hammer pressure wave high-frequency signal in field fracturing operations. The research results provide a technical approach for the feature analysis of the field signals, the optimization of the filtering algorithms, and the effectiveness evaluation of the filtering models in the field applications.
-
顺北油气田油气资源丰富,勘探面积已经达到3 000 km2以上[1-2]。该油气田为典型的缝洞型碳酸盐岩油藏,基质较为致密,平均渗透率小于1.0 mD,渗流能力较差;地层中发育裂缝、微裂缝及溶洞,钻井完井过程中,钻井液、完井液容易对地层造成污染,堵塞天然裂缝,降低本已较弱的渗流能力[3]。传统的压裂技术一般只能形成简单裂缝,难以波及离主裂缝较远的储集体[4],改造效果不理想;暂堵转向压裂技术可形成复杂裂缝,连通更多储集体,改善开发效果[5]。
进行暂堵转向压裂首先需要通过物理模拟实验明确和验证裂缝暂堵转向的可行性和裂缝暂堵转向规律,虽然目前国内外学者已进行了一些裂缝起裂扩展物理模拟实验[6-7],但很少进行暂堵条件下的三轴物理模拟实验,裂缝暂堵转向规律不明确。N. R. Warpinski等人[8]进行了矿场挖掘试验,认为节理、断层和层面等地质间断面对水力裂缝形态影响显著。R. G. Jeffrey等人[9]进行了矿场水力压裂试验,考察了水力裂缝与天然裂缝、剪切带和纹理的相互作用规律。目前国内主要开展了真三轴大型物理模拟实验,研究水力裂缝起裂扩展规律和影响因素,杨焦生等人[10]通过实验认识到当水平主应力差较小时,水力裂缝主要沿天然裂缝方向随机扩展;随着水平主应力差增大,水力裂缝面垂直于最小主应力方向。张士诚等人[11]利用页岩露头岩样进行了水力压裂裂缝扩展模拟实验,得到了相似的结论。汪道兵等人[12-13]针对砂岩进行了暂堵转向压裂物理模拟实验,发现暂堵可增大施工压力,使裂缝复杂程度增强,但未进行碳酸盐岩暂堵转向压裂实验研究。李玮等人[14]采用有限元方法进行了暂堵转向压裂数值模拟,研究了纤维暂堵转向过程中主应力、岩石力学参数对裂缝转向的影响。
由于目前缺少碳酸盐岩暂堵转向压裂方面的实验研究,笔者等人改进了暂堵转向压裂物理模拟实验装置及实验方法,开展了顺北碳酸盐岩储层缝内暂堵转向压裂实验研究,通过碳酸盐岩真三轴暂堵转向压裂物理模拟实验,明确了暂堵压裂过程中施工压力的特征、压裂裂缝形态、暂堵转向影响因素及影响规律,为顺北油气田储层暂堵转向压裂设计及施工提供了理论依据和指导。
1. 暂堵转向压裂实验装置
传统的三轴暂堵压裂物理模拟实验装置管线较细,无法泵送暂堵剂;同时,受井筒结构限制,裸眼井段不够长,暂堵剂很难进入裂缝内,无法进行暂堵转向压裂模拟。为此,在三轴暂堵压裂物理模拟装置的基础上,增加暂堵剂泵送系统,改进井筒结构,以满足暂堵转向压裂实验需求(见图1)。泵送系统采用2个液罐,一个放置压裂液,另一个放置暂堵液(暂堵剂与压裂液的混合物),为防止暂堵剂堵塞管线,采用内径10.0 mm的管线。采用外径20.0 mm、内径14.0 mm、长150.0 mm的钢管模拟井筒;固井时,岩样中部留出50.0 mm长的裸眼井段。
真三轴暂堵压裂物理模拟装置主要由岩样腔、井口、暂堵液罐、压裂液罐、驱替泵和控制台组成(见图2),可对尺寸为300 mm×300 mm×300 mm或400 mm×400 mm×400 mm的岩样开展压裂物理模拟实验。本文实验采用300 mm×300 mm×300 mm的碳酸盐岩露头岩样,用驱替泵对岩样进行三向主应力加载。
实验过程中,压裂液通过井筒进入岩样内部,在有限的空间内可以迅速憋起高压,从而实现裂缝起裂扩展。由于室内岩样尺寸较小,压裂形成的裂缝较窄,为了保证暂堵剂能进入裂缝内,选用体膨颗粒和纤维2种暂堵材料配合进行封堵。体膨颗粒暂堵材料具有变形性,在压力作用下能够变形,可顺利进入裂缝内;由于长纤维易于在缝口形成桥塞,无法进入裂缝内部,因此,要求采用长度小于1.0 mm的纤维暂堵材料[15-16]。
以胍胶压裂液为暂堵剂携带液,压裂液中加入为2%~4%的暂堵剂,混合均匀配制成暂堵液,置于暂堵液灌中,试验时将暂堵液泵入井筒内。
2. 暂堵转向压裂实验
2.1 实验步骤
1)在岩样中钻取一个直径20.0 mm、长度200.0 mm的井眼;用长度为150.0 mm的钢管模拟井筒并进行固井,中间留出50.0 mm长的裸眼井段。
2)制备2罐压裂液,将其中一罐置于压裂液罐中,将另一罐添加2%~4%的暂堵剂配制成暂堵液,然后置于暂堵液罐中。
3)将岩样置于岩样腔内,根据实验要求对岩样施加最小水平主应力、最大水平主应力和垂向应力,然后进行4组实验,第一、二组的三向应力均为5,13和15 MPa,但暂堵液中暂堵剂的加量不同,第三、四组的三向应力均为2,10和15 MPa,暂堵液中暂堵剂的加量也不同。
4)首先泵入压裂液,压开第一条裂缝;再切换为暂堵液,用压裂液将暂堵剂携带入缝内,实验过程中记录施工压力。
5)泵注结束,取出岩样,观察岩样表面的裂缝形态;然后剖开岩样,观察岩样内部的裂缝形态、暂堵剂铺设形态和裂缝转向情况,并与施工压力曲线结合进行分析。
2.2 实验结果分析
2.2.1 第一组实验
实验施加的三向应力分别为5,13和15 MPa,分别泵注1 000 mL压裂液和1 000 mL暂堵液,暂堵液是在压裂液中加入0.4%纤维暂堵剂配制而成,排量为50 mL/min,实验压力曲线如图3所示。
从图3可以看出,泵注未加入暂堵剂压裂液的压裂过程中有明显破裂点,裂缝起裂压力较高,裂缝延伸压力较低,这与常规压裂过程中的压力变化规律相似;泵注加入暂堵剂的压裂液后,施工压力逐渐升高,最高达20.0 MPa,且压力波动明显,该压力特征为暂堵剂在裂缝中运移暂堵以及压开新缝所致。暂堵剂进入裂缝时,与裂缝壁面有摩擦,暂堵液流动阻力增加,所以施工压力逐渐升高;随着更多暂堵剂进入裂缝深部,逐渐堵塞裂缝,暂堵带越来越致密,施工压力越来越高,当施工压力达到一定值时,新裂缝开启,压力有明显降落,裂缝沿新方向延伸。由于一直泵注加入暂堵剂的压裂液,所以后期施工压力较高,且跳动明显。
压裂后取出岩样,剖开岩样发现,纤维进入了裂缝内部,分布较广,压裂形成了复杂缝,与常规压裂形成的裂缝形态差异明显。泵注压裂液后形成了第一条缝,由于非均质性影响,该缝并不完全垂直于最小主应力。暂堵后,形成了第二条裂缝,该裂缝在第一条裂缝的某一位置起裂,并在新的方位扩展。另外,观察裂缝表面发现,第二条裂缝面颜色发黄,为层理面,该裂缝实际为层理面开启,层理面应力较弱,暂堵后压力升高后开启了层理面。
2.2.2 第二组实验
实验施加的三向应力分别为5,13和15 MPa,分别泵注1 000 mL压裂液和1 000 mL暂堵液,暂堵液是在压裂液中加入0.7%纤维暂堵剂配制而成,排量为50 mL/min,施工压力曲线如图4所示。
从图4可以看出,泵注未加入暂堵剂压裂液时破裂不明显,由于采用的天然岩样上有微裂缝,起裂压力不明显;泵注加入暂堵剂压裂液的阶段,压力明显上升,且上升过程中波动幅度较大,说明暂堵效果较好;压力上升过程中有时出现明显突降,是压开新缝的标志。由于第二段一直泵注加入暂堵剂的压裂液,压力升高非常明显,最高达到35.0 MPa。
实验结束,取出岩样剖开发现,暂堵剂进入了裂缝内部,形成了复杂裂缝。第一条裂缝垂直于最小主应力,第二条裂缝与最小主应力有一定夹角,第二条裂缝面颜色发黄,为层理面开启。
2.2.3 第三组实验
实验施加的三向应力分别为2,10和15 MPa,分别泵注1 000 mL压裂液和1 000 mL暂堵液,暂堵液是在压裂液中加入1.0%的体膨颗粒暂堵剂配制而成,暂堵剂粒径小于100目,排量为100 mL/min。由于体膨颗粒暂堵剂变形能力较强,且具有一定流动性,膨胀后颗粒较小,形成的阻力较小,注入暂堵剂后施工压力仍较低,且无明显突变(见图5)。实验结束,取出岩样剖开看到,只是形成了简单缝。实验结果表明,以小粒径体膨颗粒为暂堵剂,加量较小,施工净压力较低时,无法形成暂堵转向。
2.2.4 第四组实验
实验施加的三向应力分别为2,10和15 MPa,泵注1 000 mL暂堵液,暂堵液是在压裂液中加入5.0%的体膨颗粒暂堵剂配制而成,暂堵剂粒径1.0~3.0 mm,排量为100 mL/min,施工压力曲线如图6所示。
从图6可以看出,由于体膨颗粒粒径较大,加量较大,泵注暂堵液过程中压力较高,达到14 MPa左右,且波动明显。虽然大量暂堵剂进入裂缝中,注入压力较高,由于该岩样微裂缝或层理不发育,虽然暂堵后施工压力升高,但岩样没有出现明显破裂点,只形成了简单缝,说明天然裂缝或层理面是暂堵转向压裂的必要条件。根据能量最小原则,裂缝总是沿着阻力最小的方向延伸,暂堵转向压裂过程中裂缝的扩展也遵循这一原则。第一次开裂的位置阻力最小,虽然暂堵升高了压力,裂缝仍然沿阻力最小方向扩展;均质岩样中,原裂缝仍然是阻力最小的方向,所以未观察到暂堵转向现象。存在的天然裂缝或层理(其强度较低)提供了阻力次小的方向,暂堵提升压力后,出现裂缝转向延伸现象。实际地层存在非均质性,总会存在天然裂缝或层理面,暂堵中只要压力升得足够高,就能实现暂堵转向。
以上实验表明,泵注压裂液时,裂缝延伸压力较低;泵注暂堵液时(低加量体膨颗粒暂堵液除外),泵注压力上升明显,且波动明显,这是由于暂堵剂在缝内堵塞形成高阻力带,从而提高了泵注压力。岩样存在天然裂缝或层理时,通过暂堵提高施工压力,就能形成复杂的裂缝,就可观察到裂缝转向延伸现象;岩样无天然裂缝或层理面时,只能形成简单裂缝形态,无法观察到裂缝转向延伸现象;不加入暂堵剂,泵注压力没有明显升高,只能形成简单裂缝形态,也无法观察到裂缝转向延伸现象。研究认为,实现裂缝暂堵转向、形成复杂裂缝的必要因素是存在天然裂缝或层理面和暂堵剂进入裂缝内部形成暂堵。
3. 结 论
1)暂堵转向压裂物理模拟实验中,由于裂缝宽度较窄,因此,暂堵剂进入裂缝内是保证实验成功的重要条件。小颗粒体膨颗粒和较短纤维能进入缝内,实现暂堵转向的目的;如暂堵剂在井筒内形成桥塞,则达不到缝内暂堵转向的目的。
2)暂堵转向压裂中,如暂堵剂在缝内有效堵塞,泵注压力明显升高,且出现明显波动,表明发生暂堵转向形成了新裂缝,且新起裂位置为天然裂缝或层理所在位置,压裂后可形成复杂裂缝。
3)若无天然裂缝或层理面,即使形成暂堵使泵注压力升高,在较均质的岩样中仍然只能形成简单的裂缝;若暂堵后压力升高不明显,也不会出现裂缝转向现象;存在天然裂缝或层理面、暂堵后施工压力明显升高是实现裂缝转向、形成复杂裂缝的必要条件。
-
表 1 不同截止频率下巴特沃斯低通滤波器滤波效果的评价结果
Table 1 Filtering performance evaluation results of Butterworth low-pass filter at different cut-off frequenciesfilter
fc/Hz RC RQSN 近似信噪比 近似均方
误差峰值能量
保留率,%5 0.007 612.96 22.96 0.27 24 50 0.655 18.70 23.73 0.25 81 100 0.464 11.10 24.30 0.23 87 表 2 不同窗口长度下高斯平滑滤波器滤波效果的评价结果
Table 2 Filtering performance evaluation results of Gaussian smoothing filter at different window lengths
lwin RC RQSN 近似
信噪比近似
均方误差峰值能量
保留率,%5 0.412 4.59 26.28 0.19 99 30 0.999 18.59 23.57 0.25 80 60 0 29.72 23.26 0.26 45 表 3 不同分解层小波变换滤波效果评价结果
Table 3 Filtering performance evaluation results of wavelet transform decomposition with different decomposition layers
分解层数 RC RQSN SNR MSE 峰值能量
保留率,%1 0.748 10.72 23.77 0.23 80 4 0.866 23.72 23.46 0.26 78 10 0.001 213.43 22.15 0.29 9 -
[1] 王永辉,卢拥军,李永平,等. 非常规储层压裂改造技术进展及应用[J]. 石油学报,2012,33(增刊1):149–158. WANG Yonghui, LU Yongjun, LI Yongping, et al. Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica, 2012, 33(supplement 1): 149–158.
[2] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012 ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
[3] 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9. doi: 10.11911/syztjs.2022065 JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9. doi: 10.11911/syztjs.2022065
[4] ECONOMIDES M J, NOLTE K G, AHMED U. Reservoir stimulation[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall, 1989: 291–292.
[5] 李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024,52(1):1–7. doi: 10.11911/syztjs.2024001 LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1–7. doi: 10.11911/syztjs.2024001
[6] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103. doi: 10.3787/j.issn.1000-0976.2023.02.009 SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103. doi: 10.3787/j.issn.1000-0976.2023.02.009
[7] BOGDAN A V, KEILERS A, OUSSOLTSEV D, et al. Real-time interpretation of leak isolation with degradable diverter using high frequency pressure monitoring[R]. SPE 182451, 2016.
[8] PARKHONYUK S, FEDOROV A, KABANNIK A, et al. Measurements while fracturing: nonintrusive method of hydraulic fracturing monitoring[R]. SPE 189886, 2018.
[9] 雍锐,丘阳,周福建,等. 基于高频水击压力页岩气井暂堵效果评价[J]. 石油科学通报,2024,9(5):789–797. doi: 10.3969/j.issn.2096-1693.2024.05.060 YONG Rui, QIU Yang, ZHOU Fujian, et al. The evaluation of temporary plugging effect in shale gas wells based on high-frequency water hammer pressure[J]. Petroleum Science Bulletin, 2024, 9(5): 789–797. doi: 10.3969/j.issn.2096-1693.2024.05.060
[10] PANJAITAN M L, MORIYAMA A, MCMILLAN D, et al. Qualifying diversion in multi clusters horizontal well hydraulic fracturing in haynesville shale using water hammer analysis, step-down test and microseismic data[R]. SPE 189850, 2018.
[11] 温杰雄,田伟,毕全福,等. 基于数字滤波的压裂停泵数据反演方法[J]. 中国科学技术大学学报,2018,48(5):392–399. doi: 10.3969/j.issn.0253-2778.2018.05.008 WEN Jiexiong, TIAN Wei, BI Quanfu, et al. A new data inversion analysis method based on digital filtered pump-stop data of hydraulic fracturing[J]. Journal of University of Science and Technology of China, 2018, 48(5): 392–399. doi: 10.3969/j.issn.0253-2778.2018.05.008
[12] 罗英浩. 压裂停泵水击压力波衰减特征与裂缝形态智能评估方法[D]. 北京:中国石油大学(北京),2023. LUO Yinghao. Decay characteristics of water hammer pressure wave and intelligent evaluation method of fracture morphology in fracturing pump-stopping[D]. Beijing: China University of Petroleum(Beijing), 2023.
[13] LI Yujiao, HU Xiaodong, ZHOU Fujian, et al. A new comprehensive filtering model for pump shut-in water hammer pressure wave signals during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part E): 109796.
[14] ALOBAID H, KHAN A M, ALMULHIM A, et al. Comprehensive design and diagnostic approach for horizontal completions in carbonate environment[R]. SPE 210977, 2022.
[15] 胡晓东,周福建,李宇娇,等. 压裂停泵水击压力波信号滤波方法与特征分析[J]. 石油科学通报,2021,6(1):79–91. doi: 10.3969/j.issn.2096-1693.2021.01.007 HU Xiaodong, ZHOU Fujian, LI Yujiao, et al. Filtering methods and characteristic analysis of water hammer pressure-wave signals from fracturing stop pumps[J]. Petroleum Science Bulletin, 2021, 6(1): 79–91. doi: 10.3969/j.issn.2096-1693.2021.01.007
[16] 胡晓东,黄国鹏,周福建,等. 一种基于小波分解的水力压裂信号分析方法、装置和设备:CN202210128266.9[P]. 2022-07-22. HU Xiaodong, HUANG Guopeng, ZHOU Fujian, et al. The method, device and equipment of hydraulic fracturing signal using wavelet decomposition: CN202210128266.9[P]. 2022-07-22.
[17] CAI Jianhua, CHEN Qingye. De-noising for NMR oil well logging signals based on empirical mode decomposition and independent component analysis[J]. Arabian Journal of Geosciences, 2015, 9(1): 55.
[18] 邓瑞,王恺,张海博,等. 石油测井数据对调制噪声的响应[J]. 断块油气田,2007,14(2):83–85. doi: 10.3969/j.issn.1005-8907.2007.02.030 DENG Rui, WANG Kai, ZHANG Haibo, et al. Respond of petroleum log data to modulation noise[J]. Fault-Block Oil & Gas Field, 2007, 14(2): 83–85. doi: 10.3969/j.issn.1005-8907.2007.02.030
[19] PATIL P B, CHAVAN M S. A wavelet based method for denoising of biomedical signal[C]//International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012). Piscataway, New Jersey: IEEE Press, 2012: 278–283.
[20] RAKSHIT M, DAS S. An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter[J]. Biomedical Signal Processing and Control, 2018, 40: 140–148. doi: 10.1016/j.bspc.2017.09.020
[21] LINS CALDAS A S, TORRES PEREIRA E, NOBRE LEITE N M, et al. Towards automatic EEG signal denoising by quality metric optimization[C]//2020 International Joint Conference on Neural Networks (IJCNN). Piscataway, New Jersey: IEEE Press, 2020: 1–7.
[22] LI Chuanjiang, DENG Huiyin, YIN Shiyi, et al. sEMG signal filtering study using synchrosqueezing wavelet transform with differential evolution optimized threshold[J]. Results in Engineering, 2023, 18: 101150. doi: 10.1016/j.rineng.2023.101150
[23] 张科,姜海旭,王靖宇. 基于滑动最速跟踪微分器的遥测数据滤波方法[J]. 西北工业大学学报,2020,38(3):515–522. doi: 10.3969/j.issn.1000-2758.2020.03.009 ZHANG Ke, JIANG Haixu, WANG Jingyu. A sliding window optimal tracking differentiator filtering method for satellite telemetry data[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 515–522. doi: 10.3969/j.issn.1000-2758.2020.03.009
[24] 钟建军,宋健,由长喜,等. 基于信噪比评价的阈值优选小波去噪法[J]. 清华大学学报(自然科学版),2014,54(2):259–263. ZHONG Jianjun, SONG Jian, YOU Changxi, et al. Wavelet de-noising method with threshold selection rules based on snr evaluations[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 259–263.
[25] ZHAO Xueyang, REN Xuhu, YAN Zhidan, et al. Research on denoising method of mud pulse signal based on adaptive coefficient kalman[C]//2022 3rd Asia Symposium on Signal Processing (ASSP). Piscataway, New Jersey: IEEE Press, 2022: 11–18.
[26] ZHAN Liwei, LI Chengwei. A comparative study of empirical mode decomposition-based filtering for impact signal[J]. Entropy, 2017, 19(1): 13.
[27] MA Shihan, LYU Bo, LIN Chuang, et al. EMG signal filtering based on variational mode decomposition and sub-band thresholding[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(1): 47–58. doi: 10.1109/JBHI.2020.2987528
[28] SRAITIH M, JABRANE Y. A denoising performance comparison based on ECG signal decomposition and local means filtering[J]. Biomedical Signal Processing and Control, 2021, 69: 102903. doi: 10.1016/j.bspc.2021.102903
[29] PLAPOUS C, MARRO C, SCALART P. Improved signal-to-noise ratio estimation for speech enhancement[J]. IEEE Transactions on Audio Speech and Language Processing, 2006, 14(6): 2098–2108. doi: 10.1109/TASL.2006.872621
[30] SUN Zhigang, GAO Mengmeng, WANG Guotao, et al. Research on evaluating the filtering method for broiler sound signal from multiple perspectives[J]. Animals, 2021, 11(8): 2238. doi: 10.3390/ani11082238
[31] POTVIN J R, BROWN S H M. Less is more: High pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates[J]. Journal of Electromyography and Kinesiology, 2004, 14(3): 389–399. doi: 10.1016/j.jelekin.2003.10.005
[32] CAI Jianhua, XIAO Yongliang. Filtering of nuclear magnetic resonance logging signal based on the generalized S transform and singular value decomposition[J]. Arabian Journal of Geosciences, 2018, 11(12): 305. doi: 10.1007/s12517-018-3641-0
[33] HU Yongjian, HUANG Yanfu, LI Xianyi. Automatic de-noising and recognition algorithm for drilling fluid pulse signal[J]. Petroleum Exploration and Development, 2019, 46(2): 393–400. doi: 10.1016/S1876-3804(19)60019-4
[34] 亢武臣,杨书博,赵琪琪,等. 基于优化变分模态分解和互相关的钻井液脉冲信号处理方法[J]. 石油钻探技术,2023,51(3):144–151. doi: 10.11911/syztjs.2023068 KANG Wuchen, YANG Shubo, ZHAO Qiqi, et al. A pulse signal processing method for drilling fluid based on optimal variational mode decomposition and cross-correlation[J]. Petroleum Drilling Techniques, 2023, 51(3): 144–151. doi: 10.11911/syztjs.2023068
[35] CHEN Guo, YAN Zhidan, GAO Tingzheng, et al. Study on model-based pump noise suppression method of mud pulse signal[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108433. doi: 10.1016/j.petrol.2021.108433
[36] DING Weijie, HOU Shijun, TIAN Shuaikang, et al. A Bayesian optimized variational mode decomposition-based denoising method for measurement while drilling signal of down-the-hole drilling[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1–14.
[37] JIANG Ruochen, WEI Mingdong. An improved method of local mean decomposition with adaptive noise and its application to microseismic signal processing in rock engineering[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 6877–6895. doi: 10.1007/s10064-021-02338-8
[38] ZHANG Chongchong, SHI Yannan, LIU Jiangong, et al. A denoising method of mine microseismic signal based on NAEEMD and frequency-constrained SVD[J]. The Journal of Supercomputing, 2022, 78(15): 17095–17113. doi: 10.1007/s11227-022-04554-9
[39] 邵立明,孙永文,樊立新,等. γ射线测井信号数字滤波效果的评价方法[J]. 石油仪器,2007,21(6):40–43. SHAO Liming, SUN Yongwen, FAN Lixin, et al. Evaluation methods for digital filtering effect of gamma ray logging signal[J]. Petroleum Instruments, 2007, 21(6): 40–43.
[40] QIU Yang, HU Xiaodong, ZHOU Fujian, et al. Water hammer response characteristics of wellbore-fracture system: multi-dimensional analysis in time, frequency and quefrency domain[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110425. doi: 10.1016/j.petrol.2022.110425
[41] 周福建,胡晓东,丘阳,等. 基于水击压力波信号进行压裂诊断的系统和压裂诊断方法:CN202010254265. X[P]. 2020-08-18. ZHOU Fujian, HU Xiaodong, QIU Yang, et al. The method and system of fracturing diagnosis using water hammer signal: CN202010254265. X[P]. 2020-08-18.
[42] KORKIN R, PARKHONYUK S, FEDOROV A, et al. High frequency pressure monitoring and data analytics for stimulation efficiency determination: new perspectives or potential limits[R]. SPE 199762, 2020.
-
期刊类型引用(21)
1. 李逸飞. 低产油气井强制裂缝转向重复压裂技术的应用探究. 能源与节能. 2025(03): 64-66 . 百度学术
2. 邹雨时,李彦超,杨灿,张士诚,马新仿,邹龙庆. 页岩水平井多簇喷砂射孔暂堵转向压裂裂缝扩展规律. 石油勘探与开发. 2024(03): 624-634 . 百度学术
3. ZOU Yushi,LI Yanchao,YANG Can,ZHANG Shicheng,MA Xinfang,ZOU Longqing. Fracture propagation law of temporary plugging and diversion fracturing in shale reservoirs under completion experiments of horizontal well with multi-cluster sand jetting perforation. Petroleum Exploration and Development. 2024(03): 715-726 . 必应学术
4. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 . 百度学术
5. 杨丽. 暂堵转向技术在致密油直井缝网压裂中的应用. 西部探矿工程. 2023(01): 64-66+71 . 百度学术
6. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
7. 马永生,蔡勋育,云露,李宗杰,李慧莉,邓尚,赵培荣. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发. 2022(01): 1-17 . 百度学术
8. 赵振峰,叶亮,李明瑞,王文雄,古永红,牟春国,吴文川,于小荣. 酸压用自降解颗粒暂堵剂的制备与性能评价. 合成化学. 2022(03): 167-174 . 百度学术
9. MA Yongsheng,CAI Xunyu,YUN Lu,LI Zongjie,LI Huili,DENG Shang,ZHAO Peirong. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Petroleum Exploration and Development. 2022(01): 1-20 . 必应学术
10. 李新勇,李骁,赵兵,王琨,苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术. 石油钻探技术. 2022(02): 92-98 . 本站查看
11. 梁智飞,刘长松,甄怀宾,赵海峰,王成旺. 韩城区块煤层气井二次改造工艺优化及现场试验. 石油钻探技术. 2022(03): 92-98 . 本站查看
12. 何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 . 本站查看
13. 张瀚澜,赖小娟,王鹏程,杨文飞,刘学文,马锐,曹建坤,杨明亮. 新型自降解压裂转向材料的合成与表征. 科学技术与工程. 2022(35): 15586-15591 . 百度学术
14. 曹华庆,吴波,龙志平,王殿学,黄干廷,马向东. 京津冀岩溶热储钻井关键技术. 石油钻探技术. 2021(02): 42-47 . 本站查看
15. 王博,刘雄飞,胡佳,刘进军,周福建,周航. 缝内暂堵转向压裂数值模拟方法. 石油科学通报. 2021(02): 262-271 . 百度学术
16. 王超. 碳酸盐岩转向酸酸化技术与应用. 中国新技术新产品. 2021(07): 46-48 . 百度学术
17. 王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 . 本站查看
18. 马俊强,轩跃刚,崔骏. 煤层气井层内暂堵转向压裂技术应用分析. 中国石油和化工标准与质量. 2020(11): 193-194 . 百度学术
19. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 . 百度学术
20. 蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 . 百度学术
21. 李新勇,耿宇迪,刘志远,汪文智,周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究. 石油钻探技术. 2020(06): 88-93 . 本站查看
其他类型引用(5)