深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究

耿宇迪, 蒋廷学, 刘志远, 罗志锋, 王汉青

耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
引用本文: 耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
Citation: GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045

深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究

基金项目: 国家科技重大专项“缝洞型油藏堵调及靶向酸压工艺技术”(编号:2016ZX05014-005-003)部分研究内容
详细信息
    作者简介:

    耿宇迪(1977—),男,江苏淮安人,2000年毕业于石油大学(华东)焊接工艺专业,2004年获石油大学(北京)油气井工程专业硕士学位,高级工程师,主要从事酸化压裂改造技术研究。E-mail:gengyd.xbsj@sinopec.com

    通讯作者:

    王汉青,wanghanqing90@126.com

  • 中图分类号: TE357.1+1

Mechanism of Hydraulic Fracture Propagation in Deep Fracture-Cavity Carbonate Reservoirs

  • 摘要:

    为了准确掌握深层缝洞型碳酸盐岩油藏压裂过程中水力裂缝的扩展规律,基于弹性力学、断裂力学和流–固耦合理论,建立了适用于缝洞型储层的水力裂缝扩展数学模型,采用数值模拟方法分析了水力裂缝扩展过程与缝洞体的相互作用规律,并对“沿缝找体”压裂技术的适用性进行了深入探讨。数值模拟结果表明:溶洞周围发育天然裂缝时,会影响缝洞体周围局部诱导应力场,使水力裂缝更容易沟通缝洞体;采用大排量注入低黏压裂液或中小排量注入高黏压裂液,仅能沟通与水力裂缝初始扩展方向夹角较小的溶洞,而对与水力裂缝初始扩展方向夹角较大的溶洞,则需考虑采用强制转向技术进行沟通。研究结果表明,基于井眼与缝洞体的配置关系,采用“沿缝找体”压裂技术可以实现直接沟通、定向沟通和沿缝沟通3种缝洞体沟通模式,显著扩大储量动用范围。

    Abstract:

    In order to understand the law of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs during the fracturing process, a mathematical model of hydraulic fracture propagation suitable for fracture-cavity reservoirs was established based on elastic mechanics, fracture mechanics, and fluid-solid coupling theory. On the basis of the model, a numerical simulation was carried out to analyze the interaction law between hydraulic fractures and fracture-cavity reservoirs during propagation, and the technical applicability of “cave connection by natural fractures” was discussed thoroughly. The numerical simulation results show that the locally induced stress field around the fracture-cavity reservoir will be affected when natural fractures develop around the cave, which makes it easier for hydraulic fractures to connect with the fracture-cavity reservoir. The injection of low-viscosity fracturing fluid at large displacement or high-viscosity fracturing fluid at medium and small displacement can only connect to caves that have a small angle with the initial hydraulic fracture propagation direction, while for caves with large angles, forced steering technology should be considered for connection. The results show that according to the distribution relationship between wellbore and fracture-cavity reservoirs, three fracture-cavity reservoir connection modes including direct connection, directional connection, and seam connection can be achieved by using the technique of “cave connection by natural fractures”, which significantly improves the production range of reserves.

  • 图  1   水力压裂裂缝扩展计算流程

    Figure  1.   Hydraulic fracture propagation calculation workflow

    图  2   数值模拟结果与物理模拟试验结果的对比

    Figure  2.   Comparison between numerical simulation results and physical simulation results

    图  3   溶洞直径和溶洞与水力裂缝初始扩展方向夹角对水力裂缝扩展的影响

    Figure  3.   Influence of cave’s diameter and its angle with initial hydraulic fracture propagation direction on hydraulic fracture propagation

    图  4   溶洞与水力裂缝初始扩展方向夹角和天然裂缝面密度对水力裂缝扩展的影响

    Figure  4.   Influence of cave’s angle with initial hydraulic fracture propagation direction and natural fracture surface density on hydraulic fracture propagation

    图  5   单一溶洞沟通工程图版

    Figure  5.   Engineering chart of single cave connection

    图  6   水力裂缝在复杂缝洞体中的扩展模式

    Figure  6.   Propagation mode of hydraulic fractures in complex fracture-cavity reservoirs

    图  7   过TK1井地震能量属性剖面

    Figure  7.   Seismic energy attribute section through Well TK1

    图  8   TH1CH井酸压施工曲线

    Figure  8.   Acid fracturing construction curve of Well TH1CH

    表  1   “沿缝找体”储层改造策略

    Table  1   Reservoir stimulation strategy of "cave connection by natural fractures"

    夹角/(°)沟通半径/m沟通工艺缝内净压力/MPa
    0~3030~60常规/前置液酸压<5
    60~120多级交替注入酸压/复合酸压
    30~6030~60暂堵转向+缝网酸压5~8
    60~120暂堵转向+交替注入酸压
    60~9030~60定向喷射+转向酸压9~11
    60~120定向喷射+多级交替注入酸压
    注:夹角为水力裂缝初始延伸方向与缝洞体的夹角。
    下载: 导出CSV
  • [1] 张宁宁,何登发,孙衍鹏,等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探,2014,19(6):54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007

    ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007

    [2] 胡文革. 塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J]. 石油与天然气地质,2022,43(1):43–53.

    HU Wenge. Paleokarst fracture-vug types and their reconstruction in buried hill area, Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 43–53.

    [3] 王小垚,曾联波,魏荷花,等. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展,2018,33(8):818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818

    WANG Xiaoyao, ZENG Lianbo, WEI Hehua, et al. Research progress of the fractured-vuggy reservoir zones in carbonate reser-voir[J]. Advances in Earth Science, 2018, 33(8): 818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818

    [4] 耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    [5] 李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xingyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074

    [6] 陈志海,戴勇. 深层碳酸盐岩储层酸压工艺技术现状与展望[J]. 石油钻探技术,2005,33(1):58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018

    CHEN Zhihai, DAI Yong. Actuality and outlook of acid-fracturing technique in deep carbonate formation[J]. Petroleum Drilling Techniques, 2005, 33(1): 58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018

    [7] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    [8] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058

    [9] 牟建业,张宇,牟善波,等. 缝洞型碳酸盐岩储层酸液流动反应建模[J]. 石油科学通报,2021,6(3):465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037

    MOU Jianye, ZHANG Yu, MOU Shanbo, et al. Modeling of acid-rock interaction in naturally fractured vuggy carbonate reservoirs[J]. Petroleum Science Bulletin, 2021, 6(3): 465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037

    [10] 王燚钊,侯冰,张鲲鹏,等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报,2020,5(3):412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    [11]

    MEHRJOO H, NOROUZI-APOURVARI S, JALALIFAR H, et al. Experimental study and modeling of final fracture conductivity during acid fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109192. doi: 10.1016/j.petrol.2021.109192

    [12]

    DAI Y, HOU B, ZHOU C, et al. Interaction law between natural fractures-vugs and acid-etched fracture during steering acid fracturing in carbonate reservoirs[J]. Geofluids, 2021, 2021: 6649874.

    [13]

    CHENG L, LUO Z, YU Y, et al. Study on the interaction mechanism between hydraulic fracture and natural karst cave with the extended finite element method[J]. Engineering Fracture Mechanics, 2019, 222: 106680. doi: 10.1016/j.engfracmech.2019.106680

    [14]

    ZHAO H, XIE Y, ZHAO L, et al. Simulation of mechanism of hydraulic fracture propagation in fracture-cavity reservoirs[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 814–827. doi: 10.1007/s10553-020-01096-9

    [15] 赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96. doi: 10.13639/j.odpt.2021.01.014

    ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96. doi: 10.13639/j.odpt.2021.01.014

    [16]

    LIU Z, TANG X, TAO S, et al. Mechanism of connecting natural caves and wells through hydraulic fracturing in fracture-cavity reservoirs[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5511–5530. doi: 10.1007/s00603-020-02225-w

    [17]

    HOU B, DAI Y, ZHOU C, et al. Mechanism study on steering acid fracture initiation and propagation under different engineering geological conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 1–14.

    [18]

    KOLAWOLE O, ISPAS I. Interaction between hydraulic fractures and natural fractures: current status and prospective directions[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1613–1634. doi: 10.1007/s13202-019-00778-3

    [19]

    LA B V, BEZERRA F H R, SOUZA V H P, et al. High-permeability zones in folded and faulted silicified carbonate rocks–implications for karstified carbonate reservoirs[J]. Marine and Petroleum Geology, 2021, 128: 105046. doi: 10.1016/j.marpetgeo.2021.105046

  • 期刊类型引用(5)

    1. 秦才会,李国玉,季新标,江帆,郭宇. 基于有限元数值方法的钻杆天线磁芯槽优化研究. 模具技术. 2023(05): 6-19 . 百度学术
    2. 许天旱,丁一明,林宏,蔡炎桥,雷志胜. 超高强度钻杆钢的温度敏感系数. 材料热处理学报. 2020(10): 95-102 . 百度学术
    3. 舒志强,欧阳志英,袁鹏斌. 拉扭复合载荷条件下V150钻杆的力学性能研究. 石油钻探技术. 2019(02): 68-73 . 本站查看
    4. 丁一明,许天旱,林宏. 温度对U165超高强度钻杆钢冲击韧性的影响. 钢铁研究学报. 2019(12): 1086-1091 . 百度学术
    5. 龚维,覃亚群,罗容,尹晓刚,付海,班大明. 改性石膏晶须对HDPE复合材料力学性能的影响. 贵州师范大学学报(自然科学版). 2018(05): 36-41 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  143
  • PDF下载量:  81
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-05-14
  • 修回日期:  2023-03-19
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回