高强度高温高压直推存储式测井系统在超深井的应用

张正玉, 袁军, 李阳兵

张正玉,袁军,李阳兵. 高强度高温高压直推存储式测井系统在超深井的应用[J]. 石油钻探技术,2022, 50(5):117-124. DOI: 10.11911/syztjs.2022079
引用本文: 张正玉,袁军,李阳兵. 高强度高温高压直推存储式测井系统在超深井的应用[J]. 石油钻探技术,2022, 50(5):117-124. DOI: 10.11911/syztjs.2022079
ZHANG Zhengyu, YUAN Jun, LI Yangbing. Application of rigid HTHP pipe-conveyed memory logging system in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(5):117-124. DOI: 10.11911/syztjs.2022079
Citation: ZHANG Zhengyu, YUAN Jun, LI Yangbing. Application of rigid HTHP pipe-conveyed memory logging system in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(5):117-124. DOI: 10.11911/syztjs.2022079

高强度高温高压直推存储式测井系统在超深井的应用

详细信息
    作者简介:

    张正玉(1978—),男,江苏徐州人,2000年毕业于成都理工学院石油工程专业,高级工程师,主要从事测井、射孔等方面的研究工作。E-mail:tzhangzy.osjw@sinopec.com。

  • 中图分类号: P631.8+1

Application of Rigid HTHP Pipe-Conveyed Memory Logging Systemin Ultra-Deep Wells

  • 摘要:

    在高温高压、超深大斜度等特殊复杂井况下,由于工艺和仪器的局限性,传统测井方式无法满足油气资源的安全高效开发要求,直推储存式测井系统等测井新工艺被广泛应用。为此,在介绍高强度高温高压直推存储式测井系统组成的基础上,总结了其技术优势,分析了该系统在四川盆地及塔里木盆地超深井的典型应用场景和应用效果。现场应用表明,直推存储式测井系统在超深井测井一次成功率不低于95%且耗时最少,可以解决大摩阻、井漏及复杂井眼轨迹条件下的测井难题,较其他测井方式的测井时效和施工成功率更高,在复杂超深井测井中潜力巨大,具有广泛的推广价值。

    Abstract:

    In hostile condition wells, such as high-temperature high-pressure(HTHP) ones and ultra-deep and highly deviated ones, etc., conventional logging methods no longer meet the requirements of safe and efficient oil and gas resource development due to technological and instrumental limitations. Therefore, new logging technologies such as pipe-conveyed memory logging system have been employed extensively. Based on the introduction of the constitution of the rigid HTHP pipe-conveyed memory logging system, its technological advantages were summarized. Furthermore, the typical application scenarios and results of this system in ultra-deep wells of Sichuan Basin and Tarim Basin were analyzed. The field applications show that the success rate of the pipe-conveyed memory logging system in the logging of ultra-deep wells is not less than 95% with the shortest operation time. It suggests that the system can effectively solve the logging problems under the conditions of tight hole, lost circulation, and complex wellbore trajectory. Compared with other logging methods, this logging system offers higher logging efficiency and greater operation success rate, therefore, it demonstrates great potential in the logging of complex ultra-deep wells, and its application can be scaled up broadly as well.

  • 油气钻井过程中,随着钻井深度和套管层次增加,井眼和套管的直径逐级减小,深部复杂地层钻进和封隔难度不断增加。膨胀管技术可以在一定程度上增大井径利用率,可作为一种机械封堵方案用于井身结构和钻井方案设计,进一步优化井身结构,但仍存在一定的内径损失,无法继续采用原尺寸钻头钻进。等井径膨胀套管技术能有效增大完井后井筒的直径,可在不减小井眼直径条件下实现复杂地层封堵和无内径损失钻进,当深井钻遇复杂地层时,可作为临时技术套管进行机械封堵,无需改变钻头尺寸和井身结构继续钻进,有利于钻至设计完钻井深[1-4]

    目前,等井径膨胀套管技术国际上尚无规模化成熟应用。国外,Enventure公司开发的MonoSET等井径膨胀套管系统,已完成不同规格等井径膨胀套管现场试验;2010年该公司的ϕ203.2 mm×ϕ244.5 mm MonoSET裸眼补贴系统实现了商业化应用;2020年10月在沙特Faladi油田的JLDI-850井进行了ϕ311.1 mm等井径膨胀套管封堵试验,现已完成数十口井的现场试验[5-6]。Baker Hughes公司开发出ϕ203.2 mm×ϕ244.5 mm LinEXX等井径尾管系统,并在重点漏失层中成功应用。Weatherford公司正在研发和试验MonoBore等井眼系统[5-7]。国内,中国石化、中国石油和多所石油院校都对等井径膨胀管技术进行了攻关研发,中石化石油工程技术院有限公司进行了膨胀波纹管研究[8-13],中国石油集团工程技术研究院有限公司进行了ϕ215.9 mm井眼等井径膨胀套管系统研究和井下试验[14];各石油院校也对等井径管材和力学性能等进行了研究[15-18]。但国内的相关研究目前均处于理论研究和室内评价试验阶段,尚未进行现场试验。

    笔者通过优选膨胀管材、设计大变形膨胀螺纹和变径膨胀工具,研制了ϕ219.1 mm等井径膨胀套管系统,并通过室内试验和井下试验评价了ϕ219.1 mm等井径膨胀管系统的功能性和可靠性,为等井径膨胀套管系统现场试验奠定了基础。

    等井径膨胀套管系统在多级液缸机构作用下,使可变径膨胀工具发生二次变径,通过液压作用实现膨胀套管的等井径膨胀变形,膨胀后其内径基本与上层套管内径相同,达到无内径损失钻进。笔者通过优选大膨胀率管材、设计大变形膨胀螺纹和可变径膨胀工具,研制了ϕ219.1 mm等井径膨胀套管系统。ϕ241.3 mm井眼扩眼后下入ϕ219.1 mm等井径膨胀套管系统,等径膨胀套管膨胀后内径达245.0 mm,可满足ϕ241.3 mm钻头继续钻进的要求。

    用于等井径封堵的膨胀套管,其管体膨胀率需要达到18%~25%,远大于常规膨胀管。因此,对于管材性能要求更高,要其具有较高的延伸率,以满足管体膨胀率高的要求,同时要求管体膨胀后仍具有较好的机械强度,以达到封堵要求,并保证后续作业安全顺利[19]

    结合等井径膨胀套管膨胀率高的要求,优选低屈强比、高延伸率的ERW直缝焊管材作为ϕ219.1 mm等井径膨胀套管的基材。通过对J55钢级的ERW焊管进行特殊形变热处理,利用形变诱导Nb、Ti析出,抑制奥氏体再结晶,加大奥氏体加工硬化,加速铁素体相变,可以实现铁素体的快速形成,将延伸率提高至40%以上,有效降低系统膨胀力,提高其膨胀后的机械性能。通过测定等井径膨胀套管原始状态和扩径23%状态下的力学性能,发现其力学性能满足大变形膨胀和复杂地质条件的要求(见表1)。

    表  1  等井径膨胀套管膨胀前后的力学性能
    Table  1.  Mechanical properties of MonoHole expandable casing before and after expansion
    状态外径/mm屈服强度/MPa抗拉强度/MPa延伸率,%
    原始22045854140.1
    扩径23%26558065215.7
    下载: 导出CSV 
    | 显示表格

    根据等井径膨胀套管的作业特点可知,螺纹的膨胀率要与管体一致,这就要求螺纹在较大变形率条件下仍需保持连接和一定的密封强度。借鉴特殊螺纹接头和膨胀套管螺纹接头的基本结构,设计出大变形膨胀螺纹。该螺纹采用锥角1∶16的负角度偏梯形螺纹,螺纹齿形为倒钩式(见图1),主台肩采用−15°的逆向扭矩台肩,辅助台肩选择直角台肩,辅助密封效果好。考虑到等井径膨胀套管螺纹的膨胀率较大,将承载面角优化为−10°,从而保证外螺纹止口在膨胀过程中与内螺纹根部紧密贴合,不会松脱,增强螺纹的密封能力[20-22]

    图  1  大变形膨胀螺纹结构示意
    Figure  1.  Structure of expandable screws with large deformation

    设定膨胀过程螺纹接头下端保持轴向不变,环向膨胀扩径,采用弹塑性大变形非线性有限元分析软件模拟膨胀工具自下而上运行,使螺纹接头完成膨胀的过程。以膨胀工具在连接螺纹下端部为基准点(U2=0 mm),分析不同径向膨胀位移U2下,螺纹接头膨胀过程中的应力演变规律,结果见图2。从图2可以看出,膨胀过程中,螺纹接头应力峰值最大不超过860 MPa,而所优选膨胀材料的拉伸极限为1 172 MPa,具有较大的安全余量,整体应力状态处于较低水平,符合设计要求。

    图  2  螺纹接头膨胀过程中的应力云图
    Figure  2.  Stress contours of threaded joints during expansion

    常规膨胀管采用单一固定尺寸的实体膨胀锥完成管体膨胀,而等井径膨胀套管需要在井下实现更大膨胀率的膨胀,这就要求膨胀工具可以变径,实现二次变径膨胀,以满足等井径膨胀套管下入和膨胀结束后与上层套管具有相同内径的要求,保证使用同一尺寸钻头继续钻进。该膨胀工具主要由可变径膨胀锥、液缸闭合助力机构、压力控制机构等组成,各部分联动共同完成可变径锥闭合及管体的等井径膨胀过程。变径膨胀工具采用六瓣交错式结构的可变径膨胀锥,上、下变径锥片通过“T”形结构的配合槽分别与上、下固定锥连接,可在井下通过液压作用实现上、下变径锥片的闭合变径,使外径达到等径膨胀套管膨胀尺寸的要求,并在作业时保持外径尺寸不变[23-25]

    在膨胀过程中,变径膨胀锥的锥角主要影响膨胀套管的残余应力和膨胀时的轴向膨胀力,在膨胀锥锥角为8°~15°时,膨胀套管的膨胀力几乎保持不变并且比较低(见图3),但膨胀套管的残余应力随锥角增大而增大。经过综合分析,将可变径锥锥角优化为9°(见图4),有效地改善了膨胀套管和变径膨胀工具的受力状况。同时采用合理的表面处理工艺和减摩措施,避免了冷焊现象的出现。

    图  3  管体膨胀力与膨胀锥锥角的关系
    Figure  3.  Relation between expansion force of pipe body and cone angle of expansion cone
    图  4  变径膨胀工具膨胀锥的锥角
    Figure  4.  Expansion cone angle of adjustable expansion tools

    为了评价ϕ219.1 mm等井径膨胀套管的机械性能,按标准《石油天然气工业 套管及油管螺纹连接试验程序》(GB/T 21267—2007)测试ϕ219.1 mm等井径膨胀套管膨胀后的抗外挤强度、抗内压强度和螺纹连接强度。采用SWCPTS-200外压挤毁试验机进行ϕ219.1 mm等井径膨胀套管膨胀后纯外压条件下的挤毁试验,测得ϕ219.1 mm等井径膨胀套管膨胀后的抗外挤强度为15.1 MPa,发现其破坏形式为管体挤毁失效。将膨胀后的ϕ219.1 mm等井径膨胀套管两端封堵,采用SWLPTS-200水压增压系统进行抗内压试验,测得其抗内压强度为29.3 MPa,发现其破坏形式为螺纹撕裂失效。采用SWFSTF-1600复合加载试验机进行ϕ219.1 mm等井径膨胀套管膨胀后的拉伸试验,测得ϕ219.1 mm等井径膨胀套管膨胀后的连接强度为1 850 kN,发现其破坏形式为螺纹断裂失效。试验结果表明,ϕ219.1 mm等井径膨胀套管膨胀后的机械性能与J55钢接近,基本满足等井径膨胀套管作为“应急套管”临时封堵的要求。

    为了评价ϕ219.1 mm等井径膨胀套管的机械膨胀性能,对其管体进行了大膨胀率试验。在300T卧式压力试验机上,采用ϕ222.5 mm–ϕ245.0 mm–ϕ280.0 mm多级尺寸的膨胀锥(见图5),对ϕ219.1 mm等井径膨胀套管进行冷扩膨胀,缓慢施加压力,各级尺寸膨胀压力分别为16,18和26 MPa,膨胀过程平稳,管体未发生撕裂现象。试验结果表明,ϕ219.1 mm等井径膨胀套管管体的最大膨胀率可达40%以上,远超等井径膨胀套管系统的膨胀率(23.1%),管体的膨胀性能满足要求。

    图  5  等井径膨胀套管多级膨胀锥室内膨胀示意
    Figure  5.  Indoor expansion test of MonoHole expandable casing using multistage expansion cone

    为了验证ϕ219.1 mm等井径膨胀套管系统膨胀材料、膨胀螺纹、变径膨胀机构等关键结构的可靠性,在实验室通过液压方式,测试了ϕ219.1 mm等井径膨胀套管系统的膨胀性能。等井径膨胀套管系统采用多段螺纹连接的等井径膨胀套管,采用可变径膨胀工具和液缸闭合机构,在纯液压状态下,对等井径膨胀套管系统进行变径膨胀试验。无约束条件下,变径膨胀锥闭合过程平稳顺利,变径膨胀锥闭合压力为25 MPa,管体及螺纹等井径膨胀的压力为18~20 MPa,膨胀后管体及螺纹性能良好。试验结果表明,等井径膨胀套管的材料、变径膨胀机构及大变形膨胀螺纹均满足等井径膨胀及设计要求。

    在室内试验的基础上,为了进一步测试等井径膨胀套管系统在井下条件的工作状态,进行了井下功能性试验、裸眼下入性试验和井下全过程试验,以检验等井径膨胀套管系统结构和施工工艺的可行性。

    在S2-X101井ϕ339.7 mm套管内下入7根ϕ219.1 mm等井径膨胀套管,目的是在未固井状态下,检测压力控制机构、液缸闭合助力机构、变径膨胀工具等机构的性能。ϕ219.1 mm等井径膨胀套管下至ϕ339.7 mm套管内,投入钻杆胶塞,清水顶替至胶塞复合,加压至24 MPa促使变径膨胀锥发生二次变径,加压至28 MPa剪切胶塞至碰压座,ϕ219.1 mm等井径膨胀套管在22 MPa压力下实现等径膨胀,压力控制机构、液缸闭合助力机构、变径膨胀工具等机构工作正常,验证了ϕ219.1 mm等井径膨胀套管系统的功能。

    在KD641-X27井的裸眼井段进行ϕ219.1 mm等井径膨胀套管的下入性试验。采用钻后扩眼工艺对该井ϕ250.8 mm裸眼段的试验井段进行扩眼,在电测井径基础上,采用模拟管进行通井,通井通畅后,下入ϕ219.1 mm等井径膨胀套管,ϕ219.1 mm等井径膨胀套管顺利通过试验井段上的ϕ250.8 mm未扩眼井段,安全下至扩眼的试验井段,验证了ϕ219.1 mm等井径膨胀套管的裸眼下入性。

    为验证ϕ219.1 mm等井径膨胀套管系统的功能性和全过程施工工艺的可行性,在胜利油田河31-斜190井进行了全过程模拟试验,该试验以ϕ339.7 mm套管模拟ϕ241.3 mm井眼,在ϕ339.7 mm套管内下入ϕ219.1 mm等井径膨胀套管系统,膨胀后作为临时技术套管,以满足采用ϕ241.3 mm钻头钻进二开直至设计井深的要求。

    将ϕ219.1 mm等井径膨胀套管系统下至280.00~290.00 m井段,下入时该系统最大外径241.3 mm。ϕ219.1 mm等井径膨胀套管系统下至设计位置后,循环洗井,注入缓凝水泥浆固井,胶塞顶替到位;ϕ219.1 mm等井径膨胀套管系统的压力控制机构表现正常,胶塞复合和膨胀工具闭合现象明显,开始膨胀时的压力为40 MPa,等径膨胀压力18~24 MPa,膨胀工具安全丢手。下入ϕ241.3 mm磨鞋,钻除ϕ219.1 mm等井径膨胀套管系统的附件后,下入井下电视监测系统对ϕ219.1 mm等井径膨胀套管膨胀后的管体及膨胀螺纹进行可视化监测,发现膨胀后管体内壁光滑完整、膨胀螺纹连接可靠。采用ϕ241.3 mm钻头进行二开钻进,钻至井深2 751.00 m完钻,因油藏原因需侧钻,在井深1 500.00 m侧钻,侧钻至井深2 645.00 m完钻,最大井斜角54.22°,ϕ139.7 mm套管下至井深2 635.28 m,顺利完成固井及完井作业,完井井身结构如图6所示。

    图  6  河31-斜190井的井身结构
    Figure  6.  Casing program of Well H31-X190

    该试验下入的ϕ219.1 mm等井径膨胀套管系统,膨胀后内径达到245.0 mm,作为临时技术套管服役39 d,满足了后续ϕ241.3 mm磨鞋和ϕ241.3 mm钻头的安全下入,达到了等径膨胀和无内径损失钻进的效果。

    1)研制了ϕ219.1 mm等井径膨胀套管系统,室内试验结果表明其机械性能和膨胀性能达到了设计要求。

    2)井下全过程试验表明,ϕ219.1 mm等井径膨胀套管系统达到了等井径膨胀效果,满足ϕ241.3 mm钻头通过和作为临时技术套管的要求。

    3)等井径膨胀套管系统的结构需要进一步优化,配套施工工艺需进一步完善,以提高其稳定性和可靠性。

  • 图  1   直推存储式测井地面系统

    Figure  1.   Surface system of pipe-conveyed memory logging system

    图  2   SX5井部分井段综合测井资料

    Figure  2.   Comprehensive logging data of some well sections of Well SX5

    图  3   直推存储式测井转换接头

    Figure  3.   Crossover of pipe-conveyed memory logging

    图  4   SB1X井部分井段综合测井资料

    Figure  4.   Comprehensive logging data of some well sections of Well SB1X

    图  5   HD1X井部分井段偶极测井资料

    Figure  5.   Dipole logging data of some well sections of Well HD1X

    图  6   不同测井方式测井结果对比

    Figure  6.   Logging result comparison among different logging methods

    图  7   GR曲线频率分布直方图

    Figure  7.   Gamma ray (GR) curve frequency distribution

    图  8   DT24曲线频率分布直方图

    Figure  8.   DT24 curve frequency distribution

    图  9   X工区漏失井测井统计

    Figure  9.   Statistics of logging in wells with thief zone in work area X

    表  1   不同测井工艺对比

    Table  1   Comparison of different logging technologies

    测井工艺优点缺点
    电缆湿接头钻具
    输送测井
     1)使用常规测井仪器和电缆,费用较低
     2)曲线质量较高
     3)施工工艺成熟
     1)井况要求高
     2)钻具不能转动,钻具遇卡后处理困难
     3)易伤电缆
    随钻测井 1)对井况要求低,测井资料获取成功率较高
     2)测井仪器与钻具为一个整体,抗拉、抗扭、循环钻井液等与钻具相同,安全性高
     1)国际服务公司服务价格昂贵
     2)电磁波电阻率测量范围小(0.2~2 000 Ω·m),不适合高阻地层
     3)垂向分辨率低
    泵出存储式测井 1)无电缆,配套工具简单
     2)仪器安装在钻具或保护套内,具有抗震动和钻井液冲刷的能力,可有效保护仪器
     3)处理复杂井况可转动钻具,可随时根据需要开泵循环
     4)钻具遇卡时可用电缆或连续油管进行打捞,避免仪器损失和放射性源落井事故
     1)国际服务公司服务价格昂贵
     2)地面不能监控仪器的工作状态
     3)声波资料受井眼质量影响较大
     4)设备耐温120~150 ℃,耐压100 MPa,无法满足超深井高温高压测井要求
    直推存储式测井 1)无电缆,测井施工简单
     2)仪器外径与常规仪器相同
     3)可上提、下放测井,提升测井时效
     4)高强度设计,处理复杂情况能力强,可循环
     5)仪器耐温耐压指标高,抗拉、抗压强度大
     6)电缆及存储双模工作模式,提升测井时效
     1)仪器下放、上提时不能监控仪器状态
     2)未达到一趟钻测井效果
     3)电成像及二维核磁测井特殊测井项目不全
    下载: 导出CSV

    表  2   X工区超深井不同工艺成功率及时效对比[27]

    Table  2   Comparison of success rates and efficiency of different technologies in ultra-deep wells in work area X [27

    施工工艺一次成功率,%各阶段用时/h测井总用时/h
    组装下钻起钻循环顶通释放对接及导向裸眼测井
    电缆钻具输送测井≥90≥2.0≥26.0≥20.0≥4.00≥4.0≥4.0≥60.0
    泵出式测井≥93≥4.0≥20.0≥20.0≥4.0≥1.50≥3.5≥53.0
    直推式测井≥95≥2.0≥20.0≥20.0正常灌浆00≥4.0≥46.0
    下载: 导出CSV
  • [1] 邹才能,潘松圻,赵群. 论中国 “能源独立” 战略的内涵、挑战及意义[J]. 石油勘探与开发,2020,47(2):416–426. doi: 10.11698/PED.2020.02.21

    ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenge and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416–426. doi: 10.11698/PED.2020.02.21

    [2] 邹才能,潘松圻,党刘栓. 论能源革命与科技使命[J]. 西南石油大学学报(自然科学版),2019,41(3):1–12.

    ZOU Caineng, PAN Songqi, DANG Liushuan. On the energy revolution and the mission of science and technology[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(3): 1–12.

    [3] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探,2020,25(1):102–111. doi: 10.3969/j.issn.1672-7703.2020.01.010

    QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102–111. doi: 10.3969/j.issn.1672-7703.2020.01.010

    [4] 马海陇,邓光校,王震,等. 塔里木盆地麦盖提斜坡玉中构造带特征及石油地质意义[J]. 断块油气田,2022,29(1):1–7.

    MA Hailong, DENG Guangxiao, WANG Zhen, et al. Characteristics and petroleum geological significance of Yuzhong structural belt in Maigaiti slope, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 1–7.

    [5] 李宝帅. 库车坳陷克拉苏构造带深层致密砂岩气成藏机制[J]. 特种油气藏,2021,28(5):17–22. doi: 10.3969/j.issn.1006-6535.2021.05.003

    LI Baoshuai. Accumulation mechanism of deep tight sandstone gas reservoir in Kelasu structural belt, Kuqa Depression[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 17–22. doi: 10.3969/j.issn.1006-6535.2021.05.003

    [6] 陈强路,席斌斌,韩俊,等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探,2020,25(3):121–133. doi: 10.3969/j.issn.1672-7703.2020.03.011

    CHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121–133. doi: 10.3969/j.issn.1672-7703.2020.03.011

    [7] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2018,39(2):207–216. doi: 10.11743/ogg20180201

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201

    [8] 张正玉. 泵出式测井系统在四川地区复杂井中的应用[J]. 测井技术,2012,36(4):426–430. doi: 10.3969/j.issn.1004-1338.2012.04.021

    ZHANG Zhengyu. Application of pump-out logging system to complex wells in Sichuan Oilfield[J]. Well Logging Technology, 2012, 36(4): 426–430. doi: 10.3969/j.issn.1004-1338.2012.04.021

    [9] 刘镇江,汪小军. 放射性同位素测井技术在多层管柱配注井中的应用[J]. 特种油气藏,2021,28(4):164–169. doi: 10.3969/j.issn.1006-6535.2021.04.023

    LIU Zhenjiang, WANG Xiaojun. Application of radioisotope logging technology in injection wells with multi-layer strings[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 164–169. doi: 10.3969/j.issn.1006-6535.2021.04.023

    [10] 赵雷. 川西地区复杂水平井泵送电缆释放测井工艺[J]. 石油钻探技术,2015,43(6):66–69. doi: 10.11911/syztjs.201506012

    ZHAO Lei. Cable conveying and releasing logging meter in complicated horizontal wells in western Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(6): 66–69. doi: 10.11911/syztjs.201506012

    [11] 刘殿清. 元坝气田超深水平井测井难点与对策[J]. 天然气工业,2016,36(增刊1):26–32.

    LIU Dianqing. Difficult difficulties and countermeasures of ultra-deep horizontal well in Yuanba Gas Field[J]. Natural Gas Industry, 2016, 36(supplement1): 26–32.

    [12] 药晓江,卢华涛,尚捷,等. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术,2021,49(5):121–126. doi: 10.11911/syztjs.2021069

    YAO Xiaojiang, LU Huatao, SHANG Jie, et al. Optimization design and numerical analysis of flow passage converters in LWD tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121–126. doi: 10.11911/syztjs.2021069

    [13] 康正明,柯式镇,李新,等. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术,2020,48(4):124–130. doi: 10.11911/syztjs.2020087

    KANG Zhengming, KE Shizhen, LI Xin, et al. Probe into quantitative stratigraphic interface evaluation using a resistivity imaging LWD tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124–130. doi: 10.11911/syztjs.2020087

    [14] 陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554.

    CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 550–554.

    [15] 黄鹏宾. 存储式测井技术研究[J]. 中国石油和化工标准与质量,2017,37(10):187–188. doi: 10.3969/j.issn.1673-4076.2017.10.086

    HUANG Pengbin. Research on storage-type logging technology[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(10): 187–188. doi: 10.3969/j.issn.1673-4076.2017.10.086

    [16] 孙玉刚. 裸眼存储式测井技术在页岩气测井中的应用[J]. 中国石油和化工标准与质量,2020,40(13):205–206. doi: 10.3969/j.issn.1673-4076.2020.13.099

    SUN Yugang. Application of open-hole storage logging technology in shale gas logging[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(13): 205–206. doi: 10.3969/j.issn.1673-4076.2020.13.099

    [17] 缪祥禧,徐勇,彭华君,等. 泵出存储式测井深度异常现象分析[J]. 国外测井技术,2015(3):33–35.

    MIAO Xiangxi, XU Yong, PENG Huajun, et al. Analysis of pump storage logging depth[J]. World Well Logging Technology, 2015(3): 33–35.

    [18] 张雄辉,游畅,华远飞. 超高温高压井测井技术及应用探讨[J]. 石化技术,2021,28(4):65–66. doi: 10.3969/j.issn.1006-0235.2021.04.028

    ZHANG Xionghui, YOU Chang, HUA Yuanfei. Discussion on logging technology and application of ultra high temperature and high pressure well[J]. Petrochemical Industry Technology, 2021, 28(4): 65–66. doi: 10.3969/j.issn.1006-0235.2021.04.028

    [19] 蒋建平,罗荣,崔光. 超深、超长水平井测井工艺技术研究与应用[J]. 中外能源,2013,18(11):40–45. doi: 10.3969/j.issn.1673-579X.2013.11.008

    JIANG Jianping, LUO Rong, CUI Guang. Research and application of the logging technology for super deep and super long horizontal well[J]. Sino-Global Energy, 2013, 18(11): 40–45. doi: 10.3969/j.issn.1673-579X.2013.11.008

    [20] 近藤信也,李世雄,刘小梅,等. 在超深井环境下使用电缆测井仪的若干问题[J]. 国外测井技术,1995,10(4):23–28.

    JINTENG Xinye, LI Shixiong, LIU Xiaomei, et al. Several problems of using cable logging instrument in ultra-deep well environment[J]. World Well Logging Technology, 1995, 10(4): 23–28.

    [21] 翟小强,王瑛,刘伟,等. 存储式井下振动测量工具的设计与室内试验[J]. 石油钻探技术,2011,39(4):111–114. doi: 10.3969/j.issn.1001-0890.2011.04.024

    ZHAI Xiaoqiang, WANG Ying, LIU Wei, et al. Design and laboratory test of memory downhole vibration measurement instrument[J]. Petroleum Drilling Techniques, 2011, 39(4): 111–114. doi: 10.3969/j.issn.1001-0890.2011.04.024

    [22] 赵业卫. 存储式多参数生产测井技术[J]. 测井技术,2006,30(3):276–279. doi: 10.3969/j.issn.1004-1338.2006.03.028

    ZHAO Yewei. Memory multi-parameter production logging technique[J]. Well Logging Technology, 2006, 30(3): 276–279. doi: 10.3969/j.issn.1004-1338.2006.03.028

    [23] 曹博凡,刘湘政,张雄辉,等. 存储式测井仪器状态监测系统设计[J]. 测井技术,2018,42(3):347–351.

    CAO Bofan, LIU Xiangzheng, ZHANG Xionghui, et al. Design of logging tool condition monitoring system for storage logging technology[J]. Well Logging Technology, 2018, 42(3): 347–351.

    [24] 刘广华,段润梅. 无电缆存储式测井技术在水平井中的应用[J]. 化工管理,2017(22):120. doi: 10.3969/j.issn.1008-4800.2017.22.104

    LIU Guanghua, DUAN Runmei. Design of logging tool condition monitoring system for storage logging technology[J]. Chemical Enterprise Management, 2017(22): 120. doi: 10.3969/j.issn.1008-4800.2017.22.104

    [25] 张年英. 存储式测井仪器发展现状及展望[J]. 化学工程与装备,2019(7):72–73.

    ZHANG Nianying. Development status and prospect of storage logging instrument[J]. Chemical Engineering & Equipment, 2019(7): 72–73.

    [26] SY/T 5132—2012 石油测井原始资料质量规范[S].

    SY/T 5132—2012 Quality specifications for original petroleum logging information[S].

    [27] 张钰. 直推式存储测井工艺在西北油田的应用[J]. 石油钻探技术,2021,49(1):121–126. doi: 10.11911/syztjs.2021018

    ZHANG Yu. Application of direct-push storage logging technology in the Northwest Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 121–126. doi: 10.11911/syztjs.2021018

  • 期刊类型引用(1)

    1. 曹梦雨,岳宇航,邓富春,岳宇佳. 基于ANSYS的膨胀管膨胀过程力学研究. 煤矿机械. 2024(01): 84-87 . 百度学术

    其他类型引用(3)

图(9)  /  表(2)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  145
  • PDF下载量:  81
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-07-09
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回