韩城区块煤层气井二次改造工艺优化及现场试验

梁智飞, 刘长松, 甄怀宾, 赵海峰, 王成旺

梁智飞, 刘长松, 甄怀宾, 赵海峰, 王成旺. 韩城区块煤层气井二次改造工艺优化及现场试验[J]. 石油钻探技术, 2022, 50(3): 92-98. DOI: 10.11911/syztjs.2022067
引用本文: 梁智飞, 刘长松, 甄怀宾, 赵海峰, 王成旺. 韩城区块煤层气井二次改造工艺优化及现场试验[J]. 石油钻探技术, 2022, 50(3): 92-98. DOI: 10.11911/syztjs.2022067
LIANG Zhifei, LIU Changsong, ZHEN Huaibin, ZHAO Haifeng, WANG Chengwang. Optimization and Field Application of Secondary Stimulation Technologies for Coalbed Methane Wells in Hancheng Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 92-98. DOI: 10.11911/syztjs.2022067
Citation: LIANG Zhifei, LIU Changsong, ZHEN Huaibin, ZHAO Haifeng, WANG Chengwang. Optimization and Field Application of Secondary Stimulation Technologies for Coalbed Methane Wells in Hancheng Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 92-98. DOI: 10.11911/syztjs.2022067

韩城区块煤层气井二次改造工艺优化及现场试验

基金项目: 国家自然科学基金项目“一种复杂缝网的能量断裂准则及其在致密砂岩压裂模拟中的应用”(编号:11672333)资助
详细信息
    作者简介:

    梁智飞(1987—),男,陕西渭南人,2010年毕业于西南石油大学石油工程专业,中国石油大学(北京)工程管理专业在职硕士研究生,工程师,主要从事煤层气、致密气、页岩气储层改造方面的研究。E-mail:liangzhifei@petrochina.com.cn。

  • 中图分类号: TE323

Optimization and Field Application of Secondary Stimulation Technologies for Coalbed Methane Wells in Hancheng Block

  • 摘要:

    韩城区块煤层气井产能尚未完全释放,无法支撑长期稳产和高产。为进一步优化煤储层二次改造工艺,改造低产能煤层气井,提高煤层气单井产量,在剖析该区块地质特征的基础上,分析了常规二次压裂工艺试验井的低产原因。针对二次改造施工过程中的工艺缺陷及技术难题,以解决“煤粉堵塞裂缝+新裂缝延伸距离有限”为主要目标,形成了“酸化+暂堵”复合二次改造工艺,并在3口井进行了现场试验。采用复合二次改造新工艺后,试验井J4井平均产气量为3 765.6 m3/d,产量提升明显,裂缝改造体积较为理想;J5井、J6井恢复生产能力,且上产潜力较大。研究结果表明,复合二次改造新工艺在低产能煤层气井应用效果较好,可为相同地质背景条件下的煤层气老井改造提供技术借鉴。

    Abstract:

    The productivity of the coalbed methane (CBM) wells in Hancheng Block has not been fully exploited, resulting in a problem of failed stable and high production goals over the long term. To further optimize secondary stimulation technologies for coal reservoirs, stimulation of low-productivity CBM wells, and increase production of single CBM well, the geological characteristics of this block were analyzed, and the causes of the low production in the test wells after conventional secondary fracturing were explored. The main objectives of this research targeted the technical defects and difficulties during secondary stimulation, and solving the problem of “pulverized coal plugging fractures and limited propagation distance of new fractures.” Composite secondary stimulation technologies of “acidizing + temporary plugging” were developed and tested in the field in three wells. The results showed that after the composite secondary stimulation technologies were applied, the average gas production of Test Well J4 reached 3 765.6 m3/d, indicating that a significant production increase was achieved and that the stimulated fracture volume was satisfactory. In addition, the production capacity of Test Wells J5 and J6 recovered and demonstrated great production potential. With a favorable application effect in low-productivity CBM wells, the proposed composite secondary stimulation technologies can provide a technical reference for the stimulation of old CBM wells under similar geological conditions.

  • 图  1   韩城区块11#煤层地质测井解释

    Figure  1.   Geological logging interpretation of No. 11 coal seam in Hancheng Block

    图  2   11#煤层J2井压裂施工曲线

    Figure  2.   Fracturing curve of Well J2 in No. 11 Coal Seam

    图  3   J3井暂堵压裂施工曲线

    Figure  3.   Temporary plugging fracturing curve of Well J3

    图  4   煤层气J4井压裂施工曲线

    Figure  4.   Fracturing curve of CBM Well J4

    图  5   J4井微地震裂缝监测结果

    Figure  5.   Microseismic fracture monitoring results of Well J4

    图  6   煤层气J5、J6井二次压裂产气曲线

    Figure  6.   Gas production curves of CBM Wells J5 and J6 after secondary fracturing

  • [1] 穆福元,仲伟志,赵先良,等. 中国煤层气产业发展战略思考[J]. 天然气工业,2015,35(6):110–116.

    MU Fuyuan, ZHONG Weizhi, ZHAO Xianliang, et al. Strategies for the development of CBM gas industry in China[J]. Natural Gas Industry, 2015, 35(6): 110–116.

    [2] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375–380.

    YAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375–380.

    [3] 张建国,刘忠,姚红星,等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术,2016,44(5):59–63.

    ZHANG Jianguo, LIU Zhong, YAO Hongxing, et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui coalbed methane field[J]. Coal Science and Technology, 2016, 44(5): 59–63.

    [4] 王乾. 淮北某区块煤层气井二次改造关键技术[D]. 焦作: 河南理工大学, 2017.

    WANG Qian. The key technologies of secondary stimulation for coalbed methane well in a block of Huaibei[D]. Jiaozuo: Henan Polytechnic University, 2017.

    [5] 王涛. 樊庄区块煤层气直井低产的关键影响因素及二次压裂改造[D]. 徐州: 中国矿业大学, 2020.

    WANG Tao. Key factors of low production of coalbed methane vertical well in Fanzhuang Block and its secondary fracturing reconstruction[D]. Xuzhou: China University of Mining and Technology, 2020.

    [6] 翁定为,胥云,李阳,等. 大丰油区重复压裂技术研究[J]. 石油钻采工艺,2010,32(2):75–79.

    WENG Dingwei, XU Yun, LI Yang, et al. Refracturing technology in Dafeng Oilfield[J]. Oil Drilling & Production Technology, 2010, 32(2): 75–79.

    [7] 邓燕,赵金洲,郭建春. 重复压裂工艺技术研究及应用[J]. 天然气工业,2005,25(6):67–69. doi: 10.3321/j.issn:1000-0976.2005.06.020

    DENG Yan, ZHAO Jinzhou, GUO Jianchun, et al. Research and application of multiple fracturing techniques[J]. Natural Gas Industry, 2005, 25(6): 67–69. doi: 10.3321/j.issn:1000-0976.2005.06.020

    [8] 刘洪,赵金洲,胡永全,等. 重复压裂气井造新缝机理研究[J]. 天然气工业,2004,24(12):102–104. doi: 10.3321/j.issn:1000-0976.2004.12.033

    LIU Hong, ZHAO Jinzhou, HU Yongquan, et al. Study on mechanism of inducing new fractures for refracturing gas wells[J]. Natural Gas Industry, 2004, 24(12): 102–104. doi: 10.3321/j.issn:1000-0976.2004.12.033

    [9] 王凤江,丁云宏,路勇. 低渗透油田重复压裂技术研究[J]. 石油勘探与开发,1999,26(1):71–73. doi: 10.3321/j.issn:1000-0747.1999.01.022

    WANG Fengjiang, DING Yunhong, LU Yong. Refracturing techniques for low permeability oil fields[J]. Petroleum Exploration and Development, 1999, 26(1): 71–73. doi: 10.3321/j.issn:1000-0747.1999.01.022

    [10] 李阳,姚飞,翁定为,等. 重复压裂技术的发展及展望[J]. 石油天然气学报(江汉石油学院学报),2005,27(5):789–791.

    LI Yang, YAO Fei, WENG Dingwei, et al. Development and prospect of refracturing technology[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2005, 27(5): 789–791.

    [11] 张广清,陈勉. 重复压裂新缝起裂位置与油井产量的关系[J]. 辽宁工程技术大学学报(自然科学版),2009,28(3):407–409. doi: 10.3969/j.issn.1008-0562.2009.03.021

    ZHANG Guangqing, CHEN Mian. Relationship between production and initiation location of new fractures in re-fractured well[J]. Journal of Liaoning Technical University(Natural Science), 2009, 28(3): 407–409. doi: 10.3969/j.issn.1008-0562.2009.03.021

    [12] 倪小明,朱明阳,苏现波,等. 煤层气垂直井重复水力压裂综合评价方法研究[J]. 河南理工大学学报(自然科学版),2012,31(1):39–43.

    NI Xiaoming, ZHU Mingyang, SU Xianbo, et al. Study on methods of repeated hydraulic fracturing comprehensive evaluation about CBM vertical Wells[J]. Journal of Henan Polytechnic University(Natural Science), 2012, 31(1): 39–43.

    [13] 杨兆中,杨晨曦,李小刚,等. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井:以沁水盆地柿庄南区块为例[J]. 科学技术与工程,2020,20(12):4680–4686. doi: 10.3969/j.issn.1671-1815.2020.12.010

    YANG Zhaozhong, YANG Chenxi, LI Xiaogang, et al. Multiple fracturing well selection of coalbed methane wells based on technique for order preference by similarity to ideal solution method of gray correlation: taking the case of Qinshui Basin Shizhuang south block as an examples[J]. Science Technology and Engineering, 2020, 20(12): 4680–4686. doi: 10.3969/j.issn.1671-1815.2020.12.010

    [14] 倪小明,杨艳辉,叶建平. 单一煤层重复水力压裂综合选井研究[J]. 煤矿安全,2016,47(2):170–174.

    NI Xiaoming, YANG Yanhui, YE Jianping. Study on comprehensively selecting wells by repeated hydraulic fracturing in single coal seam[J]. Safety in Coal Mines, 2016, 47(2): 170–174.

    [15] 彭兴,周玉仓,朱智超,等. 延川南深部煤层气井防漏堵漏技术[J]. 石油钻探技术,2021,49(1):47–52.

    PENG Xing, ZHOU Yucang, ZHU Zhichao, et al. Antileaking and lost circulation control technology for deep coalbed methane well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47–52.

    [16] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术,2020,48(2):17–22. doi: 10.11911/syztjs.2020006

    FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in block 1 of the Shunbei area[J]. Petroleum Drilling Techniques, 2020, 48(2): 17–22. doi: 10.11911/syztjs.2020006

    [17] 周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6–11.

    ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration, 2019, 47(4): 6–11.

    [18] 聂帅帅,郑力会,陈必武,等. 郑3X煤层气井绒囊流体重复压裂控水增产试验[J]. 石油钻采工艺,2017,39(3):362–369.

    NIE Shuaishuai, ZHENG Lihui, CHEN Biwu, et al. An experiment on refracturing with fuzzy-ball fluid for water control and stimulation of CBM Well Zheng 3X[J]. Oil Drilling & Production Technology, 2017, 39(3): 362–369.

    [19] 祝绍功,王静,李博睿,等. 大尺寸套管井多级酸化技术[J]. 石油钻采工艺,2021,43(1):110–115.

    ZHU Shaogong, WANG Jing, LI Borui, et al. Multi-stage acidizing technology of large-size cased well[J]. Oil Drilling & Production Technology, 2021, 43(1): 110–115.

    [20] 王纪伟,康玉柱,张殿伟,等. 非常规储层压裂暂堵剂应用进展[J]. 特种油气藏,2021,28(5):1–9.

    WANG Jiwei, KANG Yuzhu, ZHANG Dianwei, et al. Advances in the application of temporary plugging agents for fracturing in unconventional reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 1–9.

    [21] 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96.

    XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96.

    [22] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92.

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92.

  • 期刊类型引用(19)

    1. 陈国宏,吴占民,贺占国,王赞,陈立强. 一种液力膨胀式水泥环破碎器的研制及应用. 石油工业技术监督. 2024(03): 64-68 . 百度学术
    2. 毛军. 一种新型一次关井测试阀的研制. 油气井测试. 2024(03): 13-18 . 百度学术
    3. 罗玉财,陈新勇,谭天宇,席佳男,郑晨,李岩. 河套盆地XX井井控成功实践与分析. 西部探矿工程. 2024(08): 53-56 . 百度学术
    4. 邓静静. 低渗透异常高压注水井井控设计优化及应用. 化学工程与装备. 2024(08): 60-63 . 百度学术
    5. 贾静,张碧波,张俊良,贾长青,陈思齐,张强,黄福良,雷震中,赵筠华,袁建波. 四川盆地罗家寨高含硫气田钻完井技术创新与实践. 天然气工业. 2024(11): 101-111 . 百度学术
    6. 杨晓敏,胡攀峰,唐攀,叶秀茹,王小强. 页岩气钻井井控技术及现场安全应急管理措施. 能源与环保. 2023(09): 55-60 . 百度学术
    7. 崔树清,刘九忠,徐光波,王建云,刘冰洁,马涛. 冀中坳陷深井-超深井井控技术难点及应对措施. 石油工业技术监督. 2023(11): 60-64 . 百度学术
    8. 孙超. 低渗高压区块钻完井井控技术研究与应用. 西部探矿工程. 2022(02): 69-71 . 百度学术
    9. 胡大梁,王文刚,朱化蜀,肖国益. 关于高压高产井钻井双四通安装位置的探讨. 石油工业技术监督. 2022(03): 1-5 . 百度学术
    10. 蒋光强,林发权,贾红军. 塔里木油田探井井控技术分析研究. 内江科技. 2022(06): 73-74 . 百度学术
    11. 勾广洲. 浅气区长井段取芯井钻井井控技术研究与应用. 西部探矿工程. 2022(10): 76-78 . 百度学术
    12. 雷群,胥云,杨战伟,才博,王欣,周朗,刘会锋,徐敏杰,王丽伟,李帅. 超深油气储集层改造技术进展与发展方向. 石油勘探与开发. 2021(01): 193-201 . 百度学术
    13. LEI Qun,XU Yun,YANG Zhanwei,CAI Bo,WANG Xin,ZHOU Lang,LIU Huifeng,XU Minjie,WANG Liwei,Li Shuai. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs. Petroleum Exploration and Development. 2021(01): 221-231 . 必应学术
    14. 郑如森,高文祥,王磊,张宏强,张梁,陈兵. 塔里木油田高压气井压井技术. 油气井测试. 2021(02): 30-33 . 百度学术
    15. 胡秋萍,贾文强,王力,綦耀光,张芬娜. 基于电示功图计算煤层气井动液面的方法. 石油机械. 2019(06): 85-90 . 百度学术
    16. 周号博. 基于黏度计读值预测的高温高压流变性预测方法. 钻井液与完井液. 2019(03): 325-332 . 百度学术
    17. 艾白布·阿不力米提,庞德新,王一全,郭新维,杨文新,焦文夫. 连续油管打捞连续油管关键工具研究与应用. 石油钻探技术. 2019(06): 89-95 . 本站查看
    18. 王敏生,光新军,皮光林,闫娜,耿黎东. 低油价下石油工程技术创新特点及发展方向. 石油钻探技术. 2018(06): 1-8 . 本站查看
    19. 王健,陈颖,张军阳,韩军伟. 钻井液循环系统减缓液面波动装置研发与应用. 石油钻探技术. 2017(05): 48-52 . 本站查看

    其他类型引用(3)

图(6)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  120
  • PDF下载量:  64
  • 被引次数: 22
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2022-03-13
  • 录用日期:  2022-04-20
  • 网络出版日期:  2022-05-15
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回