Loading [MathJax]/jax/output/SVG/jax.js

超低密度水泥固井质量评价方法

吴天乾, 宋文宇, 谭凌方, 张军义, 杨春文, 郭胜来

吴天乾, 宋文宇, 谭凌方, 张军义, 杨春文, 郭胜来. 超低密度水泥固井质量评价方法[J]. 石油钻探技术, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
引用本文: 吴天乾, 宋文宇, 谭凌方, 张军义, 杨春文, 郭胜来. 超低密度水泥固井质量评价方法[J]. 石油钻探技术, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
Citation: WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111

超低密度水泥固井质量评价方法

基金项目: 国家重点基础研究发展计划(“973”计划)项目“深水浅层固井水泥环封隔完整性失效机理与控制”(编号:2015CB251202)部分研究内容
详细信息
    作者简介:

    吴天乾(1967—),男,河南南阳人,1990年毕业于西南石油学院钻井工程专业,高级工程师,主要从事钻井完井技术研究工作。E-mail:wutq.oshb@sinopec.com

  • 中图分类号: TE26

Evaluation Method for Cementing Quality of Ultra-Low-Density Cement

  • 摘要: 为了准确评价超低密度水泥浆固井质量,采用室内试验方法,研究了养护时间、温度和密度等参数对超低密度水泥石强度和声学特性的影响规律,拟合得到不同密度水泥石抗压强度与纵波、横波声速之间的关系方程;结合套管井井下声场分析结果,构建了基于抗压强度的超低密度水泥测井评价相对声幅改进算法,并建立了基于抗压强度的相对声幅校核图版。验证结果表明,漂珠类超低密度水泥石的相对声幅与抗压强度之间的对应关系较好,随着抗压强度增加,相对声幅减小;在相同抗压强度条件下,相对声幅随着水泥浆密度升高而减小。研究表明,应用超低密度水泥浆固井质量评价相对声幅校核图版,可以显著地提高固井质量评价的准确性和针对性。
    Abstract: For an accurate cementing quality evaluation of ultra-low-density cement slurry, an indoor experiment was carried out to study the influence of parameters such as curing time, temperature, and density on the strength and acoustic properties of ultra-low-density cement stone. The relationship equation between the compressive strength of cement stone with different density and the acoustic velocities of P-waves and S-waves was obtained by mathematical fitting. In combination with the downhole acoustic field analysis of cased wells, an improved algorithm of relative acoustic amplitude was developed for the evaluation of ultra-low-density cement slurry logging based on compressive strength, and a correction type-curve of relative acoustic amplitude was built on that basis. The verification results showed that for the cement slurry of cenospheres, the relative acoustic amplitude corresponded well to compressive strength, and with the increase in compressive strength, the relative acoustic amplitude decreased. Under the same compressive strength, the relative acoustic amplitude was reduced with the growth of cement slurry density. The research demonstrates that the application of the correction type-curve of relative acoustic amplitude for the cementing quality evaluation of ultra-low-density cement slurry can significantly improve the accuracy and pertinence of cemen-ting quality evaluation.
  • 图  1   密度 1.33 kg/L水泥石抗压强度发展曲线

    Figure  1.   Compressive strength of cement stone with a density of 1.33 kg/L

    图  2   密度1.33 kg/L水泥石纵横波声速发展曲线

    Figure  2.   Acoustic velocities of P-waves and S-waves of cement stone with density of 1.33 kg/L

    图  3   抗压强度与水泥浆密度的关系曲线

    Figure  3.   Relationship between compressive strength and cement slurry density

    图  4   纵横波声速与水泥浆密度的关系曲线

    Figure  4.   Relationship between cement slurry density and acoustic velocities of P-waves and S-waves

    图  5   纵波声速与抗压强度的关系曲线

    Figure  5.   Relationship between acoustic velocity of P-wave and compressive strength

    图  6   横波声速与抗压强度的关系曲线

    Figure  6.   Relationship between acoustic velocity of S-wave and compressive strength

    图  7   基于抗压强度的超低密度水泥固井质量评价相对声幅校正图版

    Figure  7.   Calibration type-curve of relative acoustic amplitude for cementing quality evaluation of ultra-low-density cement based on compressive strength

    表  1   声学和强度特性试验用超低密度水泥浆配方

    Table  1   Formula of ultra-low-density cement slurry for measurement of acoustic and strength properties

    配方密度/(kg·L−1 水泥浆各成分含量,%
    G级水泥漂珠1漂珠2微珠3微硅早强剂降滤失剂减阻剂
    11.1010030034302504.505.000.30
    21.1510030030302454.004.500.30
    31.2010027250201804.004.000.30
    41.2510025220201404.003.500.25
    51.331003600101203.301.400.20
    61.5010015005704.004.000.30
    71.90100 00004400.500.10
    下载: 导出CSV

    表  2   纵横波声速与抗压强度的拟合关系式

    Table  2   Fitting relationship between compressive strength and acoustic velocity of P-waves and S-waves

    序号密度/(kg·L–1声波速度与抗压强度关系式相关系数
    1 1.10 p=0.002e0.0039vp R2=0.989 5
    p=0.0019e0.0034vs R2=0.964 9
    2 1.15 p=0.0055e0.0034vp R2=0.941 7
    p=0.0145e0.0055vs R2=0.937 0
    3 1.20 p=0.0019e0.0035vp R2=0.891 2
    p=0.021e0.0045vs R2=0.860 7
    4 1.25 p=0.0618e0.0021vp R2=0.920 6
    p=0.0356e0.0041vs R2=0.955 4
    5 1.33 p=0.0035e0.0034vp R2=0.900 6
    p=0.0017e0.0067vs R2=0.911 3
    下载: 导出CSV
  • [1] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38.

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.

    [2] 杨海波,曹成章,冯德杰,等. 新型低密度水泥减轻材料SXJ-1的研制及应用[J]. 石油钻探技术,2017,45(4):59–64.

    YANG Haibo, CAO Chengzhang, FENG Dejie, et al. The development and application of a new low density cement reducer SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4): 59–64.

    [3] 李韶利. 1.15 g/cm3超低密度水泥浆的研究与应用[J]. 钻井液与完井液,2020,37(5):644–650.

    LI Shaoli. Study and application of an ultra-low-density cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 644–650.

    [4] 李早元,祁凌,刘锐,等. 空心微珠低密度水泥环完整性试验研究[J]. 石油钻探技术,2017,45(3):42–47.

    LI Zaoyuan, QI Ling, LIU Rui, et al. Experimental study on the integrity of low-density cement sheath with hollow microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42–47.

    [5] 刘慧婷,付家文,丛谧,等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432–3437.

    LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high strength low-density cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3432–3437.

    [6] 李盛清,林剑松,江灿,等. 随钻声波测井固井质量评价理论与数值模拟研究[J]. 地球物理学报,2020,63(7):2762–2773. doi: 10.6038/cjg2020N0086

    LI Shengqing, LIN Jiansong, JIANG Can, et al. Theoretical and numerical simulation of LWD acoustic cement logging[J]. Chinese Journal of Geophysics, 2020, 63(7): 2762–2773. doi: 10.6038/cjg2020N0086

    [7] 韩耀图,李进,李疾翎,等. 超声兰姆波测井技术在渤海油田的应用研究[J]. 石油机械,2020,48(5):8–15.

    HAN Yaotu, LI Jin, LI Jiling, et al. Application of ultrasonic lamb wave logging technology in Bohai Oilfield[J]. China Petroleum Machinery, 2020, 48(5): 8–15.

    [8] 张俊,夏宏南,孙清华,等. 几种固井质量评价测井方法分析[J]. 石油地质与工程,2008,22(5):121–123. doi: 10.3969/j.issn.1673-8217.2008.05.038

    ZHANG Jun, XIA Hongnan, SUN Qinghua, et al. Analysis of several cement evaluation methods[J]. Petroleum Geology and Engineering, 2008, 22(5): 121–123. doi: 10.3969/j.issn.1673-8217.2008.05.038

    [9] 李万东. 关于非泡沫超低密度水泥浆体系应用的建议[J]. 钻井液与完井液,2020,37(5):656–663.

    LI Wandong. Suggestions on application of non-foam ultra-low-density cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 656–663.

    [10] SY/T 6641—2017 固井水泥胶结测井资料处理及解释规范[S].

    SY/T 6641—2017 Specification for logging data processing and interpreting of cement bond[S].

    [11] SY/T 6592—2016 固井质量评价方法[S].

    SY/T 6592—2016 Procedure for cement evaluation[S].

    [12] SY/T 6466—2016 油井水泥石性能试验方法[S].

    SY/T 6466—2016 Testing of set oilwell cement[S].

    [13] 郑双进,程霖,龙震宇,等. 基于GA-SVR算法的顺北区块固井质量预测[J]. 石油钻采工艺,2021,43(4):467–473.

    ZHENG Shuangjin, CHENG Lin, LONG Zhenyu, et al. Predicting the cementing quality in Shunbei Block based on GA-SVR algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 467–473.

    [14] 步玉环,宋文宇,何英君,等. 低密度水泥浆固井质量评价方法探讨[J]. 石油钻探技术,2015,43(5):49–55.

    BU Yuhuan, SONG Wenyu, HE Yingjun, et al. Discussion of a method for evaluating cementing quality with low-density cement slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49–55.

    [15] 李早元,郑友志,郭小阳,等. 水泥浆性能对声波水泥胶结测井结果的影响[J]. 天然气工业,2008,28(7):60–62. doi: 10.3787/j.issn.1000-0976.2008.07.018

    LI Zaoyuan, ZHENG Youzhi, GUO Xiaoyang, et al. Influence of cement slurry properties on acoustic cement bond log[J]. Natural Gas Industry, 2008, 28(7): 60–62. doi: 10.3787/j.issn.1000-0976.2008.07.018

    [16] 罗勇,宋文宇,步玉环,等. 低密度水泥固井质量评价方法的改进[J]. 天然气工业,2012,32(10):59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

    LUO Yong, SONG Wenyu, BU Yuhuan, et al. Improvement on the cementing quality assessment method for light-weight cement sheaths[J]. Natural Gas Industry, 2012, 32(10): 59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

  • 期刊类型引用(1)

    1. 李新发,李婷,刘博峰,张峰,肖志明,王浩帆. 基于压裂监测的致密储层甜点识别. 断块油气田. 2020(05): 603-607 . 百度学术

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  204
  • PDF下载量:  75
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-02-27
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-12-26
  • 刊出日期:  2022-03-06

目录

    /

    返回文章
    返回