Key Drilling Technologies for Ultra-Shallow Horizontal Wells in the Jihua-1 Block of Jilantai Oilfield
-
摘要: 吉兰泰油田吉华1区块在钻超浅层水平井时,由于上部白垩系地层松软,下部片麻岩地层硬度高、可钻性差、非均质性强,存在造斜率难以保证、钻井周期长、硬地层水平段延伸困难和后期固井套管下入困难等问题。针对该情况,开展了超浅层水平井钻井技术研究。结合该区块的地质特性,应用片麻岩岩石力学参数进行模拟计算,优化了井身结构,进行了PDC个性化钻头设计,优化了钻具组合及提速工具,并集成环保性好、储层保护效果好的低固相钻井液和漂浮下套管等配套技术,形成了吉兰泰油田吉华1区块超浅层水平井钻井关键技术。现场应用4口井,均未发生任何井下复杂情况,成井效果良好,为该区块后续的水平井开发提供了技术支撑。Abstract: During the drilling of ultra-shallow horizontal wells in the Jihua-1 Block of Jilantai Oilfield, some problems were encountered due to the soft Cretaceous strata in the upper part and the high hardness, poor drillability and strong heterogeneity of the gneiss strata in the lower part. In these wells, the build up rate can not be guaranteed, the drilling cycle is long, the horizontal sections are difficult to extend in hard strata, and the later completion casings are hard to run safely. In the light of this, the drilling technologies for ultra-shallow horizontal wells were studied. Considering the geological characteristics of this region, the rock mechanics parameters of gneiss were adopted in simulation and the casing program was optimized. A customized PDC bit was designed and the bottomhole assembly and speed-up tools were optimized. In addition, supporting technologies such as float casing running and environmentally friendly low-solid drilling fluid which would effectively protect the reservoir were integrated. Thus, key drilling technologies were formed for ultra-shallow horizontal wells in the Jihua-1 Block of Jilantai Oilfield. They were applied to four wells in the field with no downhole complexity occurred, suggesting good well completion results. These technologies can provide technical support for the future development of horizontal wells in this block.
-
Keywords:
- gneiss /
- horizontal well /
- drilling /
- ultra-shallow layer /
- casing program /
- Jihua-1 Block /
- Jilantai Oilfield
-
-
表 1 常规下套管模拟分析结果
Table 1 Simulation results of conventional casing running
套管外径/mm 摩阻系数 上提载荷/kN 静载荷/kN 下放载荷/kN 下放摩阻/kN 水平段长/m 管内 管外 139.7 0.25 0.40 284.7 137.8 31.4 106.4 800 0.25 0.45 300.6 17.3 120.4 表 2 漂浮下套管模拟分析结果
Table 2 Simulation results of float casing running
套管外径/mm 摩阻系数 上提载荷/kN 静载荷/kN 下放载荷/kN 下放摩阻/kN 水平段长/m 管内 管外 139.7 0.25 0.40 191.4 115.9 53.4 62.5 800 0.25 0.45 198.0 47.7 68.2 表 3 4口超浅层水平井钻井完井参数
Table 3 Drilling and completion parameters of 4 ultra-shallow horizontal wells
井号 井深/m 垂深/m 最大井斜角/(°) 水平位移/m 水平段长/m 套管下放方式推荐 实际施工 吉华1平1井 1 422 636 78.00 1 080 817 顶驱下压 顶驱下压
(压力70~100 kN)吉华1平7井 1 326 641 72.38 1 040 783 顶驱下压 顶驱下压
(压力40~60 kN)吉华1平13井 1 493 663 78.13 1 132 843 顶驱下压 顶驱下压
(压力10 kN)吉华1平11井 1 922 634 85.82 1 591 1 204 “漂浮+顶驱”复合下套管 复合下套管至接箍位置
(井深797.67 m处) -
[1] 全晓虎,蒋官澄,吕传炳,等. 双疏型储层保护技术在吉兰泰油田的应用[J]. 钻井液与完井液,2020,37(3):306–312. QUAN Xiaohu, JIANG Guancheng, LYU Chuanbing, et al. Reservoir protection with double hydrophobic agent in Jilantai Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 306–312.
[2] 杨德相,屈争辉,陈树光,等. 河套盆地吉兰泰凹陷中生代构造层划分及意义[J]. 高校地质学报,2020,26(6):691–703. YANG Dexiang,QU Zhenghui,CHEN Shuguang, et al. Determination of mesozoic tectostratigraphic units and its significance in Jilantai Sag, Hetao Basin[J]. Geological Journal of China Universities, 2020, 26(6): 691–703.
[3] 李云峰,徐吉,徐小峰,等. 南堡2号构造深层潜山水平井钻井完井技术[J]. 石油钻探技术,2018,46(2):10–16. LI Yunfeng, XU Ji, XU Xiaofeng, et al. Drilling and completion techniques for horizontal wells in the deep buried hills of the Nanpu No. 2 structure[J]. Petroleum Drilling Techniques, 2018, 46(2): 10–16.
[4] 李伟峰,于小龙. 延长东部超浅层大位移水平井钻井技术难点与对策[J]. 非常规油气,2017,4(1):100–103, 83. doi: 10.3969/j.issn.2095-8471.2017.01.017 LI Weifeng, YU Xiaolong. The ultra-shallow large displacement horizontal well drilling difficulty and solution in Yan-chang East Oilfield[J]. Unconventional Oil & Gas, 2017, 4(1): 100–103, 83. doi: 10.3969/j.issn.2095-8471.2017.01.017
[5] 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术,2018,46(5):35–39. LIU Yonggui. Optimization and application of high performance water-based drilling fluid for horizontal wells in Daqing tight oil reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35–39.
[6] 李维,李黔. 大位移水平井下套管漂浮接箍安放位置优化分析[J]. 石油钻探技术,2009,37(3):53–56. doi: 10.3969/j.issn.1001-0890.2009.03.013 LI Wei, LI Qian. Optimization of float collar position in extended reach wells[J]. Petroleum Drilling Techniques, 2009, 37(3): 53–56. doi: 10.3969/j.issn.1001-0890.2009.03.013
[7] 陶红胜,王涛,于小龙,等. 延长石油浅层大位移水平井固井技术[J]. 石油矿场机械,2015,44(6):17–20. TAO Hongsheng, WANG Tao, YU Xiaolong, et al. Cement of shallow extended reach horizontal well in Yanchang Oilfield[J]. Oil Field Equipment, 2015, 44(6): 17–20.
[8] 王同友,王永松,张黎明,等. 大位移延伸井固井技术[J]. 石油钻采工艺,2001,23(2):18–21. doi: 10.3969/j.issn.1000-7393.2001.02.006 WANG Tongyou, WANG Yongsong, ZHANG Liming, et al. Cementing technology of extended reach well[J]. Oil Drilling & Production Technology, 2001, 23(2): 18–21. doi: 10.3969/j.issn.1000-7393.2001.02.006
[9] 徐建飞,赵晓波. 硬地层定向 PDC 钻头个性化设计与应用[J]. 金刚石与磨料磨具工程,2014,34(3):57–61, 66. XU Jianfei, ZHAO Xiaobo. Design and application of directional PDC bit in hard formation[J]. Diamond & Abrasives Engineering, 2014, 34(3): 57–61, 66.
[10] 王建龙,郑锋,刘学松,等. 井眼清洁工具研究进展及展望[J]. 石油机械,2018,46(9):18–23. WANG Jianlong, ZHENG Feng, LIU Xuesong, et al. Advances and prospects of well cleaning tools[J]. China Petroleum Machinery, 2018, 46(9): 18–23.
[11] 冯强,陈世春,王建龙,等. 振动减摩阻工具振动参数及安放位置研究[J]. 石油钻探技术,2018,46(4):78–83. FENG Qiang, CHEN Shichun, WANG Jianlong, et al. Research on vibration parameters and determining the position of a vibration friction reducing tool[J]. Petroleum Drilling Techniques, 2018, 46(4): 78–83.
[12] 王建龙,张展豪,冯强,等. 水力振荡器与液力推力器集成应用研究[J]. 石油机械,2017,45(4):44–47. WANG Jianlong, ZHANG Zhanhao, FENG Qiang, et al. Study on the integrated application of hydraulic oscillator and hydraulic thruster[J]. China Petroleum Machinery, 2017, 45(4): 44–47.
-
期刊类型引用(13)
1. 李凯凯,安然,瞿春,王毅,贺红云. 超低渗透油藏暂堵压裂技术优化研究. 石油化工应用. 2023(11): 44-47+67 . 百度学术
2. 张旺,吕永国,李忠宝,谢琳,邓建华. 绳结暂堵塞性能研究及现场应用. 中外能源. 2022(12): 63-69 . 百度学术
3. 张笑言. 低产油气井强制裂缝转向重复压裂技术. 化学工程与装备. 2022(12): 123-124+138 . 百度学术
4. 李德旗,朱炬辉,张俊成,石孝志,李军龙,邹清腾,张权,胡洋. 页岩气水平井选择性分簇压裂工艺先导性试验——以昭通国家级页岩气示范区为例. 天然气工业. 2021(S1): 133-137 . 百度学术
5. 邴艳炜. 低产油气井重复压裂技术. 化学工程与装备. 2021(04): 143+120 . 百度学术
6. 周丹,熊旭东,何军榜,董波,贺勇. 低渗透储层多级转向压裂技术. 石油钻探技术. 2020(01): 85-89 . 本站查看
7. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
8. 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 . 本站查看
9. 蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 . 百度学术
10. 孟祥灿. 大情字井油田A区块重复压裂增产技术. 油气井测试. 2020(05): 44-49 . 百度学术
11. 郭睿,于瑾,毕青,李新发. 玉门油田深井重复压裂技术研究与应用. 中国石油和化工标准与质量. 2020(22): 190-191 . 百度学术
12. 张子麟,陈勇,张全胜,李爱山,张潦源,李明,黄波. 致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究. 油气地质与采收率. 2019(04): 132-138 . 百度学术
13. 蒋建方,翟晓鹏,贺甲元,耿宇迪,崔佳,魏攀峰. 绒囊暂堵剂在深层碳酸盐岩储层转向压裂中的应用. 天然气工业. 2019(12): 81-87 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 580
- HTML全文浏览量: 254
- PDF下载量: 142
- 被引次数: 17