Research on Environmental Correction Method of Measurement Results from Near-Bit Gamma Imagers
-
摘要: 实际工况下近钻头伽马成像仪在井筒中难以保持绝对居中,需要根据偏心程度对不同方向上的伽马扇区原始测量数值进行环境校正。依据伽马成像测量原理以及近钻头伽马成像仪的结构特点,分析了不同工况下近钻头伽马成像仪偏心程度对测量结果的影响,建立了近钻头伽马成像仪偏心情况下钻井液衰减、钾基钻井液补偿等主要因素的修正图版和校正方法。试验结果表明,偏心条件下,由于井筒和近钻头伽马成像仪之间环空内钻井液的影响,根据原始伽马成像图谱计算出的地层倾角存在较大误差。采用建立的校正方法对偏心情况下的近钻头伽马成像图谱进行测量环境校正后,利用其计算出的地层倾角与地层真实倾角基本一致。研究结果表明,采用建立的测量环境校正方法对近钻头伽马成像仪偏心情况下获得的伽马成像图谱进行环境校正后,可以真实反映地层情况,计算出的地层倾角更准确。Abstract: It is difficult to maintain absolute centering in the wellbore under the actual working conditions of near-bit gamma imagers. For that reason, the environment associated with the original measurement values of gamma sectors in different directions should be corrected according to the eccentricity. Using the principle of gamma imaging and the structural characteristics of the near-bit gamma imager, the influences of the imager eccentricity on the measurement results under different working conditions were studied. The results were used to develop correction charts and methods for the main factors such as attenuation in drilling fluids and compensation in potassium-based drilling fluids when the near-bit gamma imagers were under eccentric condition. The results revealed that the formation dip calculated by the original gamma imaging analysis had a large error due to the influence of drilling fluid in the annulus between the wellbore and the instrument under such condition. In contrast, after environmental correction of near-bit gamma imaging under eccentric condition, the formation dip calculated by the correction method was essentially consistent with the real one. The research results showed that the gamma spectra obtained using near-bit gamma imager under eccentric condition could reflect the real formation after environmental correction, and could calculate the formation dip more accurately.
-
Keywords:
- near-bit /
- gamma imaging /
- eccentricity /
- attenuation in drilling fluid /
- measure environment /
- correction
-
-
-
[1] WHEELER A J, BILLINGS T, RENNIE A, et al. The introduction of an at-bit natural gamma ray imaging tool reduces risk associated with real-time geosteering decisions in coalbed methane horizontal wells[R]. SPWLA-2012-103, 2012.
[2] ZHENG Majia, LIU Xin, ZHAO Jianping, et al. RSS with near-bit GR imaging assist accurate steer drilling in shale gas project in Sichuan: a fit-for-purpose solutions for shale gas drilling case study: the 11th International Petroleum Technology Conference, Beijing, March 26-28, 2019[C].
[3] VIENS C, CLARK T, LIGHTFOOT J, et al. Real-time downhole data resolves lithology related drilling behavior[R]. SPE 189697, 2018.
[4] CARRILERO S G, CARSON D M, SHEARER E S, et al. Azimuthal gamma images uncover stratigraphic features in a seemingly featureless unconventional reservoir: the 5th EAGE Shale Workshop, Catania, May 2-4, 2016[C].
[5] GREMILLION J, FLOWERS M, TVRDY N, et al. Selection of logging while drilling measurements for geosteering of horizontal wells in unconventional reservoirs[R]. URTEC-2019-934, 2019.
[6] BØ Ø, DENICHOU J M, EZIOBA U, et al. Reservoir mapping while drilling[J]. Oilfield Review, 2015, 27(1): 38–47.
[7] AL-AWADH A, SANYAL A, KUMAR S, et al. Successful integration of geo-steering and geo-mechanics in real time: maiden application in Zubair Reservoir, Ratqa Field, Northern Kuwait[R]. SPE 187679, 2017.
[8] SUN Jian, CHEN Mingqiang, LI Qi, et al. A new method for predicting formation lithology while drilling at horizontal well bit[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107955. doi: 10.1016/j.petrol.2020.107955
[9] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060 LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
[10] 徐波,汪中浩,黎泽刚,等. 随钻自然伽马测井资料环境影响自动校正[J]. 石油天然气学报,2009,31(5):82–85. doi: 10.3969/j.issn.1000-9752.2009.05.018 XU Bo, WANG Zhonghao, LI Zegang, et al. Auto-correction method of environmental effect on gamma logging data of logging while drilling[J]. Journal of Oil and Gas Technology, 2009, 31(5): 82–85. doi: 10.3969/j.issn.1000-9752.2009.05.018
[11] 郑奕挺,方方,吴金平,等. 近钻头随钻伽马成像快速正弦曲线拟合方法[J]. 石油钻探技术,2019,47(6):116–122. doi: 10.11911/syztjs.2019101 ZHENG Yiting, FANG Fang, WU Jinping, et al. Rapid sinusoidal fitting method for near-bit Gamma imaging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(6): 116–122. doi: 10.11911/syztjs.2019101
[12] 李安宗,骆庆锋,李留,等. 随钻方位自然伽马成像测井在地质导向中的应用[J]. 测井技术,2017,41(6):713–717. LI Anzhong, LUO Qingfeng, LI Liu, et al. Application of azimuth gamma imaging logging while drilling to geosteering[J]. Well Logging Technology, 2017, 41(6): 713–717.
[13] THAKUR P D, AGNIHOTRI P, DENG Lichuan, et al. The most common impacts of drilling dynamics and environments on log-while-drilling data: a study from Abu Dhabi[R]. SPE 193113, 2018.
[14] WANG Haijiang, STOCKHAUSEN E, WYATT D, et al. Modeling of azimuthal gamma ray tools for use in geosteering unconventional reservoirs[R]. URTEC-2018-2198135, 2018.
[15] QIN Zhen, PAN Heping, WANG Zhonghao, et al. A fast forward algorithm for real-time geosteering of azimuthal gamma-ray log-ging[J]. Applied Radiation and Isotopes, 2017, 123: 114–120. doi: 10.1016/j.apradiso.2017.02.042
[16] VIENS C. Azimuthal gamma imaging and continuous inclination applications to spatial and stratigraphic wellbore placement in the Southern Midland Basin[R]. URTEC-2019-55, 2019.
[17] 邵才瑞,曹先军,陈国兴,等. 随钻伽马测井快速正演算法及地质导向应用[J]. 地球物理学报,2013,56(11):3932–3942. doi: 10.6038/cjg20131135 SHAO Cairui, CAO Xianjun, CHEN Guoxing, et al. A fast forward algorithm for LWD gamma ray response and its geosteering application[J]. Chinese Journal of Geophysics, 2013, 56(11): 3932–3942. doi: 10.6038/cjg20131135
-
期刊类型引用(7)
1. 张光伟,尹福来,程礼林,侯朋朋. 全旋转指向式导向钻井工具结构设计与仿真. 机械设计与制造. 2024(05): 136-140 . 百度学术
2. 刘永旺,郭福贵,管志川,秦晓兵. 协同钻头推靠与指向作用控制井眼轨迹的旋转导向系统. 中国石油大学学报(自然科学版). 2022(05): 73-80 . 百度学术
3. 滕学清,刘洪涛,李宁,王天博,汝大军,董仁. 塔里木博孜区块超深井自动垂直钻井难点与技术对策. 石油钻探技术. 2021(01): 11-15 . 本站查看
4. 宋红喜,崔谦,曾义金,张卫,米金泰,黄中伟. 旋转导向单总线传输机制研究. 石油机械. 2021(05): 35-41 . 百度学术
5. 狄勤丰,芮子翔,周星,冯大军,王文昌,陈锋. 带旋转导向工具的底部钻具组合横向振动特性研究. 石油钻探技术. 2021(06): 8-16 . 本站查看
6. 张光伟,乔阳,高嗣土,田帆. 全旋转内置式可控弯接头运动特性. 石油钻采工艺. 2020(01): 45-51 . 百度学术
7. 张光伟,高嗣土,乔阳,田帆. 指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响. 石油钻探技术. 2019(06): 27-33 . 本站查看
其他类型引用(8)