Simulation and Experimental Studies on the Influencing Factors of a Thermal Flowmeter with Constant Temperature Difference
-
摘要: 针对恒温差热式流量计在井下测量小流量流体时误差较大的问题,进行了温度、压力的影响研究。根据流量计加热器电功率与被测流体流量的关系,分析了温度对液态水物性参数的影响,通过数值模拟研究了不同温度下水流量与流量计换热功率的变化曲线。在此基础上,搭建了可调节水温和流体流量的试验平台,在定压(常压)条件下,通过试验分析了25~40 ℃下流量计功率与水流量的关系,试验发现,流量计的加热器功率与环境温度成单调增关系。理论分析实测条件下恒温差热式流量计的影响因素得到:流量计位于0~2 000 m井段时,深度每增加500 m造成的测量误差约为2.2 m3/d;位于2 000~4 000 m井段,测量误差约为0.6 m3/d。研究表明,相同流量下,恒温差热式流量计的输出功率会随井深增加(井筒温度、压力变化)而升高,导致出现测量误差,研究结果为该流量计测量结果的校正和有效应用提供了理论依据。Abstract: Due to the fact that the thermal flowmeter with constant temperature difference brings large errors when measuring downhole flow in low flow-rate, the influence of temperature and pressure was studied. According to the relationship between the electric power of the flowmeter heater and the measured flow rate, the influence of temperature on the physical parameters of liquid water was analyzed, and the change curve of the heat transfer power of the flowmeter and flow rate at different temperatures was simulated numerically. An experimental platform with adjustable water temperature and flow rate was built on that basis, and the relationship between the power of the flowmeter and flow rate at 25–40 °C under constant pressure was thereby analyzed, revealing that power of the flowmeter heater increases monotonically with temperature. In terms of theoretical analysis, a 500 m increase in the well depth leads to an error of 2.2 m3/d when the flowmeter is in the depth from 0 to 2 000 m; while the error is 0.6 m3/d when it is in the depth from 2 000 to 4 000 m. The results showed that output power of the thermal flowmeter with constant temperature difference will increase with the increase of well depth (wellbore temperature, pressure change), resulting in measurement errors, which provides a theoretical basis for the correction and effective application of the flowmeter measurement results.
-
页岩气井由于储层渗透率低至微达西、纳达西级,需采用压裂改造才能有效开发,为了提高气藏采收率和单井产量,国内外普遍采用了“长水平段水平井+大规模水力压裂”的开发方式[1-9]。储层压裂的主要目的是在其最大、最小水平主应力方向都产生裂缝,从而形成复杂缝网以获得最佳流体渗流条件。簇间暂堵工艺可以使所有射孔簇均衡压裂,形成主要沿着最大主应力方向延伸的水平主缝,而缝内暂堵工艺可以形成垂直最大水平主应力方向的裂缝。因此,为了实现各簇均衡改造并增加缝网的复杂性,国内外学者开展了投球簇间暂堵和缝内暂堵技术研究。方裕燕等人[10]从暂堵剂配方、段塞组合和施工参数3个方面研究了暂堵材料在炮眼内的封堵规律;周彤等人[11]基于边界元方法建立了“井筒–孔眼–裂缝扩展”全耦合模型,对非均匀应力场影响下裂缝扩展模拟和投球暂堵优化进行了研究。页岩气井暂堵压裂技术研究虽然取得了一些成果,但仍存在暂堵压力升高不明显、施工压力暂时性升高但未传递到裂缝内部、簇间暂堵与缝内暂堵无法有机结合等问题[12-13]。为了解决暂堵压裂技术存在的不足[14-15],通过优选暂堵剂、优化暂堵剂用量、优化压裂暂堵设计与施工参数,形成了页岩气井双暂堵压裂技术。该压裂技术在南川页岩气田LQ-1HF井进行了现场试验,与常规压裂井段相比,裂缝长度和裂缝面积分别平均增加了5.8%和12.5%,形成了较好的复杂缝网。这验证了双暂堵压裂技术在页岩气储层改造中的可行性和有效性,为页岩气田高效开发及压裂作业降本增效提供了新的技术手段。
1. 双暂堵压裂技术原理
针对水平井多簇压裂时产生的多簇裂缝延伸不均衡的问题,双暂堵技术将堵炮眼的投球暂堵方式和投暂堵剂的缝内暂堵方式相结合,基于暂堵剂选型、暂堵剂用量和暂堵方式优化,可以形成复杂缝网,从而提高井筒与地层泄流空间[16-17]。簇间暂堵和缝内暂堵的工艺原理如图1所示。
从图1可以看出,通过多次投放暂堵剂将水平主裂缝进行临时性封堵,继而压开所有射孔簇,实现簇间暂堵;暂堵剂进入水平主裂缝内部或端部后,可以实现缝内暂堵,当聚集形成的滤饼承压能力超过最大、最小水平主应力差时,裂缝延伸方向会从最大水平主应力方向转向最小水平主应力方向,在水平主裂缝薄弱处产生支裂缝,并沟通更多微裂缝,从而形成复杂缝网。
2. 关键技术研究
页岩气井双暂堵压裂技术的关键是优选合适的暂堵剂及用量,并优化施工工艺,以确保形成复杂缝网,从而提高页岩气井的产量及采收率,达到页岩气开发降本增效的目的。
2.1 暂堵剂选型
为满足双暂堵压裂的要求,暂堵剂需要在地层温度下迅速胶结形成强度较大的团块,在炮眼处和裂缝内形成一定厚度的滤饼,从而大幅提高暂堵压力,实现簇间和缝内转向。为此,在调研国内外常用暂堵剂的基础上,优选了压差聚合胶结型暂堵剂GTF-SM。该暂堵剂为粒径1~2 mm的白色粉末状颗粒,适用温度90~160 ℃,主要化学成分为聚乳酸。性能试验结果显示,该暂堵剂对储层无伤害,胶结暂堵效果好,在地层温度条件下30 s内能胶结形成高强度滤饼,当滤饼厚度分别为5,10和20 mm时,其承压能力分别为56.1,61.3和65.2 MPa。
在室内进行了暂堵剂GTF-SM的降解性能试验,用电子天平分别准确称取3.5 g暂堵剂GTF-SM,置于耐高温高压瓶中,然后加入清水各50 mL(固液比7%),分别放入90 ℃水浴、110和120 ℃烘箱中,反应不同时间后过滤剩下的残留物,置于50 ℃烘箱中加热3 h后称重,并计算降解率,结果见表1。
表 1 暂堵剂GTF-SM的降解试验结果Table 1. Results of degradation performance test for GTF-SM temporary plugging agent温度/℃ 时间/h 滤纸质量/g 降解率,% 反应前 反应后 90 24 1.371 3.809 2.48 48 1.377 1.992 75.40 72 1.389 1.651 89.50 96 1.390 1.645 89.80 110 8 1.389 3.975 –3.44 12 1.385 1.671 88.60 24 1.375 1.504 94.80 36 1.359 1.491 94.70 120 6 1.348 4.138 –11.60 16 1.378 1.534 93.80 注:降解液黏度为1~2 mPa·s,pH值为4~5。 从表1可以看出,相同温度下,时间越长降解率越高;温度越高,降解率越高,且降解需要的时间越短。由此可见,暂堵剂GTF-SM具有良好的降解性能,既能满足压裂作业中暂时封堵裂缝的需要,又不污染页岩气储层,有利于提高页岩气井产量。
2.2 暂堵剂用量优化
暂堵剂用量主要与压裂裂缝的宽度有关,裂缝越宽,需要形成的暂堵滤饼越厚,暂堵剂用量也就越大。为了提高暂堵效果,需要根据裂缝的实际情况优化暂堵剂用量。为此,通过选择不同宽度裂缝的试验模型,通过室内试验测试了不同厚度滤饼的承压能力,以期得到裂缝宽度与滤饼厚度的关系。
试验方法为:1)配制一定浓度的暂堵液5 L,倒入岩板造缝封堵承压试验装置的中间容器;2)根据裂缝宽度(0.5~20.0 mm),调整特制金属岩板(可根据试验需求选择金属岩板或者天然岩板)间的垫片厚度,将特制金属岩板放入导流室腔体;3)将导流室安装在压机上,连接好导流室进出口管线;4)用压机对导流室施加围压,设定围压30 MPa(围压比设定最高封堵压力高5~10 MPa);5)开启注液泵,以一定排量(0~50 mL/min)注液,设定试验排量为40 mL/min,设定最高封堵压力为20 MPa;6)若暂堵液全部驱替完后未对裂缝形成封堵(即驱替压力未升高),则停止试验;若在驱替过程中,暂堵液对裂缝形成封堵(即驱替压力不断升高),则待泵压达到20 MPa后恒压驱替3 min后停泵,记录此时的驱替液量;若驱替压力不断升高,但在达到设定最高驱替压力前突然降低(即突破封堵层),则停泵并记录最高驱替压力及此时的驱替液量。
图2所示为试验得到的裂缝宽度与滤饼厚度的关系曲线。由图2可知,在相同封堵压力条件下,裂缝越宽,需要形成的滤饼就越厚,暂堵剂用量就越大。
确定滤饼厚度后,簇间暂堵时假设射孔段为圆柱体,缝内暂堵时根据裂缝形态,由暂堵剂嵌入比例、裂缝剖面空间和暂堵剂的密度分别计算簇间和缝内暂堵压裂时的暂堵剂用量,计算公式为:
GC=πH(dΔd+Δd2)ρa(1+k)10 (1) GF=2hwΔdρa(1+k)α10 (2) 式中:GC和GF分别为簇间和缝内暂堵压裂时的暂堵剂用量,kg;H为射孔段长度,m;d为套管外径,cm;Δd为滤饼厚度,cm;ρa为暂堵剂视密度,g/cm3;k为暂堵剂嵌入比例;h为动态裂缝高度,m;w为动态裂缝宽度,cm;α为损耗系数,一般为1.3~1.5。
2.3 暂堵工艺优化
2.3.1 簇间暂堵
1)簇间暂堵的主要目的是压开所有的射孔簇并形成主裂缝,为了保证暂堵剂在缝口处聚集并快速胶结形成簇间暂堵滤饼,暂堵剂泵送排量应不大于4 m3/min。
2)簇间暂堵剂的加入时机,一般选择在第一次压裂将已开启的各簇改造完成后,对未开启的剩余各簇进行改造时。
3)簇间暂堵效果主要依靠现场压裂时的泵压变化,并结合微地震监测裂缝延伸情况进行判断,达到以下3个标准之一即认为实现了簇间暂堵:a.暂堵剂到达缝口后,泵压变化要大于簇间最小两向主应力差值,一般约为2 MPa(300 psi);b. 实现簇间暂堵后,泵压有一个升高趋势;c.缝内净压力或瞬时停泵压力在裂缝转向前后的增加值约大于0.689 MPa(100 psi)。
2.3.2 缝内暂堵
1)在缝内暂堵压裂时,一般选择在注入液量达到设计总液量的1/4~1/3时加入暂堵剂,使暂堵剂尽可能进入裂缝远端位置形成缝内暂堵。
2)根据加砂原理,暂堵剂粒径小于缝宽的1/6时,会顺利进入裂缝,同时保持排量不低于6 m3/min,将暂堵剂送入裂缝内部。暂堵剂GTF-SM的缝内承压能力可达到约20 MPa,因此在缝内转向压裂作业时,储层最大、最小主应力的差值不要超过20 MPa。
3)在压裂作业时,大排量注入压裂液产生的较大摩阻压力会抵消掉暂堵压力的增加值,因此在压裂施工曲线上难以看到有较大的暂堵压力产生,但缝内暂堵时会产生压力波动,暂堵后施工压力整体呈上升趋势。
3. 现场试验
双暂堵压裂技术在南川页岩气田LQ-1HF井进行了现场试验。试验井段的暂堵压力提高、裂缝长度增加、裂缝面积增大,测试结果显示,该井平均产气量23.37×104 m3/d,优于采用常规压裂技术的同区块页岩气井,表明该技术能够形成较好的复杂缝网,提高单井产量。
3.1 井眼概况
LQ-1HF井是一口开发井,完钻井深6 285.00 m,采用三开井身结构,目的层为上奥陶统五峰组—下志留统龙马溪组下部页岩气层。该井上部气层含气性好,纵向上无明显隔层,因此在压裂时应优先促使裂缝在储层纵向上扩展,同时兼顾裂缝在储层横向上延伸,从而实现改造体积最大化。
该井龙马溪组包括①—③小层,最大、最小水平主应力差约7 MPa,水平段(3 755.00~6 255.00 m)井眼轻微上翘,主要穿行于龙马溪组③小层(长为2 354.00 m),A靶点井深3 960.00 m,垂深3 677.00 m,井斜角80.71°;B靶点井深6 260.00 m,垂深3 471.00 m,井斜角96.20°。
3.2 压裂设计
该井设计分成25段压裂,根据裂缝发育特征,优选第5段、第7段等10个压裂井段进行双暂堵压裂技术试验,这些井段主要穿行于③小层,且高角度裂缝发育。其中,选取第10段(5簇)、第11段(4簇)、第14段(6簇)、第15段(6簇)和第18段(5簇)等5段进行簇间暂堵试验,第5段(4簇)、第7段(4簇)、第8段(5簇)、第16段(6簇)和第20段(5簇)等5段进行缝内暂堵试验。根据式(1)和式(2)计算暂堵剂用量,其中,Δd=2.3 cm,k=60%,ρa=1.7 g/cm3,H=3.0或3.2 m,结果见表2。
表 2 簇间暂堵与缝内暂堵压裂井段的暂堵剂用量Table 2. Temporary plugging agent dosages of inter-cluster temporary plugging and intra-fracture temporary plugging暂堵类型 裂缝宽度/mm 裂缝高度/mm 暂堵剂用量/kg 簇间暂堵 6~8 45 184~210 缝内暂堵 6~8 30 65~138 3.3 现场施工
LQ-1HF井双暂堵压裂排量16~18 m3/min,施工压力30~80 MPa,累计注入压裂液52 608 m3,累计加砂2 315 m3。其中,暂堵压裂井段的施工排量及暂堵剂用量见表3。下面以第14段(簇间暂堵)和第20段(缝内暂堵)为例,详细介绍现场施工情况。
表 3 簇间暂堵与缝内暂堵压裂井段的排量及暂堵剂用量Table 3. Pumping rates and temporary plugging agent dosages of inter-cluster temporary plugging and intra-fracturetemporary plugging暂堵类型 压裂井段 排量/(m3·min–1) 暂堵剂用量/kg 簇间暂堵 第10段 3.0 184 第11段 3.0 184 第14段 4.0 230 第15段 4.0 210 第18段 4.0 207 缝内暂堵 第5段 8.0 92 第7段 6.0 92 第8段 6.0 138 第16段 6.0 138 第20段 17.5 65 3.3.1 簇间暂堵压裂
图3所示为第14段簇间暂堵压裂施工曲线。由图3可知,该井段开井压力 23.5 MPa,快速提高排量,达到地层破裂压力65.7 MPa(如图中点A)后开始加砂,首个加砂段塞最高排量为18 m3/min,泵压59.0~63.9 MPa,注入压裂液590 m3后,将排量降至4 m3/min,注入胶液30 m3并加入暂堵剂230 kg,暂堵剂到达炮眼后(如图中点B),泵压由40.5 MPa升至46.5 MPa,满足裂缝转向的要求。裂缝转向后正常加砂压裂9个段塞,最后1个段塞排量18 m3/min,施工压力 66.6~68.5 MPa,最高砂比 12%(30/50 目陶粒),顶替排量 18 m3/min,顶替压力 66.6~67.8 MPa,停泵压力34.2 MPa,20 min 后降至31.9 MPa。该井段共注入液量 2 529.1 m3(滑溜水2 529.1 m3,顶替液105.1 m3),总砂量 95.5 m3。
3.3.2 缝内暂堵压裂
图4所示为第20段缝内暂堵压裂施工曲线。由图4可知,该井段开井压力 22.3 MPa,快速提高排量,达到地层破裂压力 61.2 MPa(如图中点A)后开始加砂,首个段塞排量 17.0~17.5 m3/min,泵压 57.1~59.1 MPa,当注入压裂液约328.6 m3时,注入胶液 20 m3并加入暂堵剂65 kg,暂堵剂进入裂缝深部后(如图中点B),泵压由57.7 MPa升至59.8 MPa,施工压力呈现缓慢上升趋势。裂缝转向后正常加砂压裂12个段塞,最后1个段塞排量18 m3/min,施工压力69.2~71.9 MPa,最高砂比11%(40/70 目陶粒),顶替排量18 m3/min,顶替压力71.6~63.3 MPa,停泵压力32.6 MPa,20 min 后降至29.6 MPa。该井段共注入液量2 253.3 m3(滑溜水2 160.7 m3,顶替液92.6 m3),总砂量83.8 m3。
3.4 应用效果分析
3.4.1 暂堵压力明显提高
暂堵压力提高幅度能直接反映暂堵效果好坏,LQ-1HF井进行双暂堵压裂的10个井段的暂堵压力提高幅度见表4。
表 4 LQ-1HF井双暂堵压裂井段暂堵压力统计结果Table 4. Statistical results of temporary plugging pressure in the dual temporary plugging fracturing section of Well LQ-1HF暂堵类型 压裂井段 暂堵压力/MPa 暂堵前 暂堵后 提高幅度 簇间暂堵 第10段 31.7 32.2 0.5 第11段 32.4 32.8 0.4 第14段 40.5 46.5 6.0 第15段 42.5 46.2 3.7 第18段 33.1 36.3 3.2 缝内暂堵 第5段 39.0 39.8 0.8 第7段 32.2 32.8 0.6 第8段 32.1 32.5 0.4 第16段 38.4 38.6 0.2 第20段 57.7 59.8 2.1 从表4可以看出,第10段和第11段暂堵压力提高幅度小于2 MPa(簇间最小两向主应力差值),簇间暂堵效果不明显,分析认为主要原因是地层裂缝预测不准确,设计暂堵剂用量偏低。为此,对暂堵剂用量重新进行了计算,在后续第14段、第15段和第18段簇间暂堵时增大了暂堵剂用量,最大用量为230 kg,暂堵压力提高幅度为3.2~6.0 MPa,大于2 MPa,判断实现了簇间暂堵。缝内暂堵井段在施工后暂堵压力整体呈上升趋势,提高幅度为0.2~2.1 MPa,平均提高幅度0.82 MPa,整体暂堵压力提高效果明显。
3.4.2 裂缝长度和裂缝面积
根据压裂全过程微地震监测结果,双暂堵压裂井段与常规压裂井段的裂缝分布总效应如图5所示(图5中,白实线表示裂缝破裂走向,虚线表示分支缝网,两者交叉组成压裂破裂缝网),可以看出,双暂堵压裂井段形成的缝网更为复杂。
LQ-1HF井全部压裂井段的裂缝长度和裂缝面积统计结果显示,双暂堵压裂井段(共10段)的平均裂缝长度为487.00 m,与常规压裂井段(共15段)的平均裂缝长度(460.00 m)相比,增加了5.8%;双暂堵压裂井段的平均裂缝面积为3.68×105 m2,与常规压裂井段的平均破裂面积(3.27×105 m2)相比,增加了12.5%。可见,双暂堵压裂技术改善缝网的效果较好。
3.4.3 试气测试结果
对LQ-1HF井上奥陶统五峰组—下志留统龙马溪组3 755.00~6 255.00 m井段进行试气测试,并采用ϕ10.0 mm油嘴放喷求产:稳定8 h,产气量(23.16~23.51)×104 m3/d,平均产气量23.37×104 m3/d,平均套压20.17 MPa,产液量277.44 m3/d。该井测试结果优于同区块采用常规压裂技术的页岩气井。
4. 结论与建议
1)通过优选压差聚合胶结型暂堵剂GTF-SM,优化其用量和暂堵压裂工艺,形成了可实现簇间暂堵和缝内暂堵的双暂堵压裂技术。该技术可有效解决投球暂堵压裂技术存在的问题,但储层裂缝发育的不确定性导致准确计算暂堵剂用量的难度较大。
2)双暂堵压裂技术在LQ-1HF井分段压裂中的现场试验结果表明,加入暂堵剂后,暂堵压力明显提高,基本达到了转向压裂的目的;而且,微地震监测与测试结果显示,与常规压裂井段相比,双暂堵压裂井段形成的缝网更为复杂。
3)双暂堵压裂技术能提高页岩气井压裂后的产气量,建议进一步结合地质条件增大水平井压裂单段长度,开展单段内多级暂堵,减少水平井分段压裂的段数,并进一步优化暂堵剂用量,以更好地实现降本增效的目的。
-
表 1 不同井深条件下水的物性参数
Table 1 Physical parameters of water at different well depths
井深/
m温度/
℃表压力/
MPa密度/
(kg∙m–3)导热系数/
(W∙(m∙K)–1)动力黏度/
(Pa∙s)普朗
特数0 25 0 997.05 0.607 2 0.890 6.130 22 500 40 3.92 993.93 0.632 4 0.653 4.306 72 1 000 55 7.84 989.09 0.653 0 0.506 3.223 93 1 500 70 11.76 982.89 0.668 9 0.407 2.532 24 2 000 85 15.68 975.57 0.680 9 0.338 2.065 45 2 500 100 19.60 967.30 0.689 8 0.287 1.736 63 3 000 115 23.52 958.21 0.696 1 0.249 1.496 99 3 500 130 27.44 948.39 0.700 4 0.220 1.317 57 4 000 145 31.36 937.90 0.703 0 0.197 1.180 40 -
[1] 汪余景,翟军勇. 基于恒温差的热式空气流量计[J]. 仪表技术与传感器,2017(6):41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011 WANG Yujing, ZHAI Junyong. Thermal air flow meter based on constant temperature difference[J]. Instrument Technique and Sensor, 2017(6): 41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011
[2] 朱小会,袁玉霞,吴紫君. 基于ARM的热式空气流量计的设计[J]. 仪表技术与传感器,2019(10):54–56, 60. doi: 10.3969/j.issn.1002-1841.2019.10.013 ZHU Xiaohui, YUAN Yuxia, WU Zijun. Design of thermal air flowmeter based on ARM[J]. Instrument Technique and Sensor, 2019(10): 54–56, 60. doi: 10.3969/j.issn.1002-1841.2019.10.013
[3] 宋纯高,刘晓磊,王延军,等. 井下热式流量计设计与实验研究[J]. 石油仪器,2014,28(3):10–12. SONG Chungao, LIU Xiaolei, WANG Yanjun, et al. Design and experimental study of downhole thermal flowmeter[J]. Petroleum Instruments, 2014, 28(3): 10–12.
[4] 姜兆宇,杨韵桐,刘兴斌,等. 热式质量流量计测量井下液相流量的探索研究[J]. 自动化技术与应用,2014,33(10):75–77. JIANG Zhaoyu, YANG Yuntong, LIU Xingbin, et al. Exploration and study of downhole thermal mass flow measurement of liquid flow[J]. Techniques of Automation & Applications, 2014, 33(10): 75–77.
[5] 汪栋良,余厚全,杨旭辉,等. 井下恒功率热式流量计设计与实现[J]. 石油管材与仪器,2018,4(2):20–23. WANG Dongliang, YU Houquan, YANG Xuhui, et al. Design and implementation of downhole constant power thermal flowmeter[J]. Petroleum Tubular Goods & Instruments, 2018, 4(2): 20–23.
[6] 张世荣.热式气体质量流量测量及补偿算法研究[D].武汉: 华中科技大学, 2007. ZHANG Shirong. Research on thermal gas mass flowmeter and compensation arithmetics[D]. Wuhan: Huazhong University of Science and Technology, 2007.
[7] 顾宇,叶寒生,冯超,等. 一种恒功率热式气体流量计温度补偿实现[J]. 仪表技术与传感器,2015(10):38–39, 42. doi: 10.3969/j.issn.1002-1841.2015.10.012 GU Yu, YE Hansheng, FENG Chao, et al. Temperature compensation for constant power thermal gas flowmeter[J]. Instrument Technique and Sensor, 2015(10): 38–39, 42. doi: 10.3969/j.issn.1002-1841.2015.10.012
[8] KRAMERS H A. Heat transfer from spheres to flowing media[J]. Physica, 1946, 12(2/3): 61–80.
[9] 罗晶,陈平. 热式质量流量计测量电路设计[J]. 仪表技术与传感器,2004(10):29–30. doi: 10.3969/j.issn.1002-1841.2004.10.010 LUO Jing, CHEN Ping. Measurement circuit design of thermal mass flowmeter[J]. Instrument Technique and Sensor, 2004(10): 29–30. doi: 10.3969/j.issn.1002-1841.2004.10.010
[10] W 瓦格纳, A 克鲁泽.水和蒸汽的性质[M].项红卫, 译. 北京: 科学出版社, 2003: 262-280. WAGNER W, KRUSE A. Properties of water and steam[M]. Translated by XIANG Hongwei. Beijing: Science Press, 2003: 262-280.
[11] 魏勇,余厚全,戴家才,等. 基于CPW的油水两相流持水率检测方法研究[J]. 仪器仪表学报,2017,38(6):1506–1515. doi: 10.3969/j.issn.0254-3087.2017.06.023 WEI Yong, YU Houquan, DAI Jiacai, et al. Water holdup measurement of oil-water two-phase flow based on CPW[J]. Chinese Journal of Scientific Instrument, 2017, 38(6): 1506–1515. doi: 10.3969/j.issn.0254-3087.2017.06.023
[12] WEI Yong, YU Houquan, CHEN Qiang, et al. A novel conical spiral transmission line sensor-array water holdup detection tool achieving full scale and low error measurement[J]. Sensors, 2019, 19(19): 4140. doi: 10.3390/s19194140
-
期刊类型引用(22)
1. 郑健,罗鑫,岳文翰,肖勇军,陈智,刘丙晓,古志斌. 新型可溶暂堵绳结性能及应用研究. 现代化工. 2024(S2): 274-279 . 百度学术
2. 王纪伟,宋丽阳,康玉柱. 暂堵转向技术在页岩油气中的应用分析与发展方向. 断块油气田. 2024(06): 1122-1128 . 百度学术
3. 张智强,王坤杰,王明贵. 威荣页岩气套变井绳结暂堵分段压裂工艺先导性试验. 油气井测试. 2024(06): 42-47 . 百度学术
4. 杨南鹏,范雨航,高彬,张世锋. 暂堵技术在致密砂岩气藏压裂中的应用. 能源与环保. 2023(01): 168-174 . 百度学术
5. 刘历历,解英明,李育展,曹毅,曾顺鹏. 低压气井修井注气吞吐复产气液两相渗流规律. 新疆石油天然气. 2023(02): 75-81 . 百度学术
6. 郭建春,赵峰,詹立,张航,曾杰. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议. 石油钻探技术. 2023(04): 170-183 . 本站查看
7. 刘福建. 柔性暂堵绳结在套变井压裂中试验应用. 内蒙古石油化工. 2023(08): 18-21 . 百度学术
8. 宋志同,王峻源,徐伟宁,李宁,冯学东,吴保中. 天然断裂带干扰下的复合暂堵压裂工艺参数优化. 石油地质与工程. 2023(05): 115-119 . 百度学术
9. 刘威,贾振福,陈恒. 可降解绳结暂堵剂性能评价及应用. 石油化工应用. 2023(09): 39-44 . 百度学术
10. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
11. 刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用. 钻井液与完井液. 2022(01): 114-120 . 百度学术
12. 梁智飞,刘长松,甄怀宾,赵海峰,王成旺. 韩城区块煤层气井二次改造工艺优化及现场试验. 石油钻探技术. 2022(03): 92-98 . 本站查看
13. 周博成,熊炜,赖建林,房启龙. 武隆区块常压页岩气藏低成本压裂技术. 石油钻探技术. 2022(03): 80-85 . 本站查看
14. 刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 . 本站查看
15. 甘洲,孔祥伟. 裂缝长度和压裂级数对储层改造的影响规律. 石油化工应用. 2022(09): 43-46 . 百度学术
16. 李金洪. 四川盆地通南巴地区高压试气工艺技术研究及应用. 断块油气田. 2022(06): 744-748 . 百度学术
17. 张遂安,刘欣佳,温庆志,张潇,赵威,袁玉. 煤层气增产改造技术发展现状与趋势. 石油学报. 2021(01): 105-118 . 百度学术
18. 张矿生,唐梅荣,陈文斌,徐创朝,杨典森,周再乐. 压裂裂缝间距优化设计. 科学技术与工程. 2021(04): 1367-1374 . 百度学术
19. 张国荣,王俊方,张龙富,陈士奎. 南川常压页岩气田高效开发关键技术进展. 油气藏评价与开发. 2021(03): 365-376 . 百度学术
20. 李永康,贾贻勇,张广中,王宏万,崔玉海. 胜利油田注水井分层酸化管柱研究现状及发展建议. 石油钻探技术. 2021(03): 129-134 . 本站查看
21. 王金刚,孙虎,任斌,尹俊禄. 填砂分段压裂技术在页岩油套变水平井的应用. 石油钻探技术. 2021(04): 139-142 . 本站查看
22. 王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 . 本站查看
其他类型引用(4)