An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology
-
摘要: 为了研究超声波高频旋冲钻井技术相较于常规旋转钻井技术的提速效果,以及钻进条件和参数对超声波高频旋冲破岩效率的影响规律,设计了超声波振动发生短节,搭建了超声波破岩模拟试验台,采用控制变量法和正交试验法,开展了超声波破岩提速试验及影响超声波破岩效率的试验,得到了钻压、超声波振幅、转速和钻头直径对超声波高频旋冲破岩效率的影响规律。结果表明:在实验室常规温度和压力条件下,与常规旋转破岩技术相比,超声波高频旋冲钻井技术的破岩效率更高,平均提高幅度达77.65%;影响超声波高频旋冲破岩效率的因素从大到小依次是钻压、振幅、钻头直径和转速;钻压和振幅对超声波高频旋冲破岩效率的影响显著,且振幅越大,超声波高频旋冲破岩的效率越高。研究结果表明,超声波高频旋冲钻井技术可为提高深部硬地层机械钻速提供一种新的破岩方法。Abstract: In order to investigate the penetration rate improvement by implementing ultrasonic high-frequency rotary-percussive (UHFRP) drilling compared to conventional rotary drilling, as well as determining the influence of different drilling conditions and parameters on UHFRP rock breaking, we designed an ultrasonic vibration pup joint and built a test bench for ultrasonic rock breaking simulation. By using control variable method and orthogonal experiment method, we carried out a penetration rate enhancement test of ultrasonic rock breaking and the corresponding influencing-factor analysis tests. Thereby we obtained the influence law of weight on bit, ultrasonic amplitude, penetration rate, and bit diameter on the UHFRP rock breaking. The test results show that compared with conventional rotary rock breaking, the UHFRP drilling has higher efficiency of rock breaking at normal temperatures and pressures in the laboratory, with an average penetration rate increase of 77.65%. In addition, weight on bit, ultrasonic amplitude, bit diameter and penetration rate have a declining impact on the rock breaking efficiency of UHFRP drilling. Furthermore, weight on bit and ultrasonic amplitude have a highly significant effect on the efficiency of UHFRP rock breaking, and a larger amplitude results in a higher efficiency of rock breaking. The results show that the UHFRP drilling technology could provide a new rock breaking method in penetration rate enhancement of deep hard formations.
-
-
表 1 超声波破岩与常规破岩试验结果对比
Table 1 Comparison of test results between ultrasonic rock breaking and conventional rock breaking
序号 试验编号 钻头直径/mm 钻压/N 转速/(r·min–1) 岩性 有无超声波 钻速/(μm·s–1) 钻速提高幅度,% H01 K01 12 400 90 泥岩 有 3.05 38.00 K02 12 400 90 泥岩 无 2.21 H02 K03 12 400 90 砂岩 有 28.18 –20.31 K04 12 400 90 砂岩 无 35.36 H03 K05 12 400 90 页岩 有 5.96 103.41 K06 12 400 90 页岩 无 2.93 H04 K07 10 400 90 砂岩 有 95.58 125.85 K08 10 400 90 砂岩 无 42.32 H05 K09 10 400 90 泥岩 有 7.36 29.35 K10 10 400 90 泥岩 无 5.69 H06 K11 10 400 90 页岩 有 1.60 29.03 K12 10 400 90 页岩 无 1.24 H07 K13 6 400 90 砂岩 有 118.90 218.51 K14 6 400 90 砂岩 无 37.33 H08 K15 6 400 90 泥岩 有 31.75 –12.29 K16 6 400 90 泥岩 无 36.20 H09 K17 6 400 90 页岩 有 70.54 187.33 K18 6 400 90 页岩 无 24.55 表 2 影响因素的不同水平取值
Table 2 The values of the level of different influencing factors
水平 钻头直径(A)/
mm振幅(B)/
μm钻压(C)/
N转速(D)/
(r·min–1)1 12 10 800 120 2 10 6 600 90 3 6 0 400 60 表 3 正交试验方案及试验结果
Table 3 Schemes and results of orthogonal experiments
序号 A B C D 破岩深度/mm 破岩体积/cm3 钻速/(mm·s–1) 1 1 1 1 1 10.18 1.151 3 0.212 1 2 1 2 2 2 9.28 1.049 5 0.103 1 3 1 3 3 3 2.25 0.254 5 0.013 6 4 2 1 2 3 6.12 0.480 7 0.061 2 5 2 2 3 1 2.26 0.177 5 0.009 4 6 2 3 1 2 5.88 0.461 8 0.098 0 7 3 1 3 2 5.71 0.161 4 0.087 8 8 3 2 1 3 5.10 0.144 2 0.113 3 9 3 3 2 1 8.37 0.236 7 0.083 7 K1 0.328 8 0.361 1 0.423 4 0.305 2 K2 0.168 6 0.225 8 0.248 0 0.288 9 K3 0.284 8 0.195 3 0.110 8 0.188 1 k1 0.110 0.120 0.141 0.102 k2 0.056 0.075 0.083 0.096 k3 0.095 0.065 0.037 0.063 极差R 0.160 2 0.165 8 0.312 6 0.117 1 因素主次顺序 C > B > A > D 最优方案 C1 B1 A1 D1 表 4 4组正交试验结果的极差分析
Table 4 Range analysis results of four groups of orthogonal experiments
试验编号 极差R 因素A 因素B 因素C 因素D Z01 0.222 1 0.107 0 0.234 4 0.247 7 Z02 0.160 2 0.165 8 0.312 6 0.117 1 Z03 0.173 6 0.025 0 0.019 6 0.025 6 Z04 0.119 7 0.422 7 0.288 9 0.098 4 平均值 0.168 9 0.180 1 0.213 9 0.122 2 因素主次顺序 C > B > A > D 最优方案 C1 B1 A1 D1 -
[1] 汪海阁,葛云华,石林. 深井超深井钻完井技术现状、挑战和“十三五”发展方向[J]. 天然气工业,2017,37(4):1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001 WANG Haige, GE Yunhua, SHI Lin. Technologies in dep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
[2] 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2020,48(5):69–76. doi: 10.11911/syztjs.2020072 LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69–76. doi: 10.11911/syztjs.2020072
[3] 陈杰,牟小军,李汉兴,等. 旋冲振荡钻井提速工具的研制与应用[J]. 断块油气田,2020,27(3):386–389. CHEN Jie, MOU Xiaojun, LI Hanxing, et al. Development and application of rotary-percussive and oscillatory drilling tool[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 386–389.
[4] 贾红军,王攀,冯伟雄,等. 深井硬岩地层钻井高频低幅扭转振荡耦合冲击器研制与应用[J]. 特种油气藏,2018,25(4):158–163. doi: 10.3969/j.issn.1006-6535.2018.04.032 JIA Hongjun, WANG Pan, FENG Weixiong, et al. Development and application of high-frequency low-torque impactor with torsion-oscillation coupling for drilling of deep and hard formations[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 158–163. doi: 10.3969/j.issn.1006-6535.2018.04.032
[5] 罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037 LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037
[6] WIERCIGROCH M, WOJEWODA J, KRIVTSOV A M. Dynamics of ultrasonic percussive drilling of hard rocks[J]. Journal of Sound and Vibration, 2003, 280(3/4/5): 739–757.
[7] PAVLOVSKAIA E, WIERCIGROCH M. Modelling of vibro-impact system driven by beat frequency[J]. International Journal of Mechanical Sciences, 2003, 45(4): 623–641. doi: 10.1016/S0020-7403(03)00113-9
[8] PAVLOVSKAIA E, WIERCIGROCH M, GREBOGI C. Modeling of an impact system with a drift[J]. Physical Review E, Statistical (Nonlinear and Soft Matter Physics), 2001, 64(5): 056224. doi: 10.1103/PhysRevE.64.056224
[9] WIERCIGROCH M, NEILSON R D, PLAYER M A. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach[J]. Physics Letters A, 1999, 259(2): 91–96. doi: 10.1016/S0375-9601(99)00416-8
[10] AJIBOSE O K, WIERCIGROCH M, AKISANYA A R. Experimental studies of the resultant contact forces in drillbit–rock interaction[J]. International Journal of Mechanical Sciences, 2015, 91: 3–11. doi: 10.1016/j.ijmecsci.2014.10.007
[11] AJIBOSE O, WIERCIGROCH M, PAVLOVSKAIA E, et al. Dynamics of a drifting impact oscillator with a conical profile[C]. Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, 2013: 313–321.
[12] PAVLOVSKAIA E, HENDRY D C, WIERCIGROCH M. Modelling of high frequency vibro-impact drilling[J]. International Journal of Mechanical Sciences, 2015, 91: 110–119. doi: 10.1016/j.ijmecsci.2013.08.009
[13] AJIBOSE O K, WIERCIGROCH M, PAVLOVSKAIA E, et al. Drifting impact osciiiator with a new modei of the progression phase[J]. Journal of Applied Mechanics, 2012, 79(6): 061007. doi: 10.1115/1.4006379
[14] 尹崧宇,赵大军,周宇,等. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版),2017,47(2):526–533. YIN Songyu, ZHAO Dajun, ZHOU Yu, et al. Numercial situlation and experiment of the damage process of heterogeneous rock under ultrasonic vibration[J]. Journal of Jilin University (Earth Sicence Edition), 2017, 47(2): 526–533.
[15] 翟国兵. 压力对超声波振动碎岩效果影响规律的研究[D]. 长春: 吉林大学, 2016. ZHAI Guobing. Study on the effect of the pressure on the ultrasonic vibration in the process of breaking rock[D]. Changchun: Jilin University, 2016.
[16] 孙梓航.超声波振动频率对花岗岩破碎规律影响的研究[D].长春: 吉林大学, 2017. SUN Zihang. Study on the effect of ultrasonic vibration frequency on granite fracture law[D]. Changchun: Jilin University, 2017.
[17] 黄家根,汪海阁,纪国栋,等. 超声波高频旋冲钻井技术破岩机理研究[J]. 石油钻探技术,2018,46(4):23–29. HUANG Jiagen, WANG Haige, JI Guodong, et al. The rock breaking mechanism of ultrasonic high frequency rotary-percussive drilling technology[J]. Petroleum Drilling Techniques, 2018, 46(4): 23–29.
[18] 张超,董世民,刘天明,等. 压电陶瓷复合超声换能器径向振动特性的仿真研究[J]. 振动与冲击,2020,39(21):217–225, 240. ZHANG Chao, DONG Shimin, LIU Tianming, et al. Simulation of radial vibration characteristics of piezoelectric ceramic composite ultrasonic transducer[J]. Journal of Vibration and Shock, 2020, 39(21): 217–225, 240.
-
期刊类型引用(9)
1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 . 百度学术
2. 罗志锋,程龙,谢耀增,刘举,张雄,罗攀登. 基于“扩缝串洞”理念的超深层小缝洞群碳酸盐岩储层改造数值模拟. 天然气工业. 2024(05): 80-95 . 百度学术
3. 周舟,李犇,耿宇迪,肖锐. 超深破碎型地层岩石力学参数的大数据预测模型. 石油钻探技术. 2024(05): 91-96 . 本站查看
4. 何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 . 本站查看
5. 郭建春,苟波,秦楠,赵俊生,伍林,王坤杰,任冀川. 深层碳酸盐岩储层改造理念的革新——立体酸压技术. 天然气工业. 2020(02): 61-74 . 百度学术
6. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
7. 韩福勇,倪攀,孟海龙. 宽带暂堵转向多缝压裂技术在苏里格气田的应用. 钻井液与完井液. 2020(02): 257-263 . 百度学术
8. 李新勇,耿宇迪,刘志远,汪文智,周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究. 石油钻探技术. 2020(06): 88-93 . 本站查看
9. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 . 百度学术
其他类型引用(1)