煤层气多分支水平井分支井眼重入筛管完井技术

谭天宇, 李浩, 李宗源, 蒋海涛, 何景朝

谭天宇, 李浩, 李宗源, 蒋海涛, 何景朝. 煤层气多分支水平井分支井眼重入筛管完井技术[J]. 石油钻探技术, 2020, 48(4): 78-82. DOI: 10.11911/syztjs.2019121
引用本文: 谭天宇, 李浩, 李宗源, 蒋海涛, 何景朝. 煤层气多分支水平井分支井眼重入筛管完井技术[J]. 石油钻探技术, 2020, 48(4): 78-82. DOI: 10.11911/syztjs.2019121
TAN Tianyu, LI Hao, LI Zongyuan, JIANG Haitao, HE Jingchao. Re-Entry Screen Completion Technology for Multi-Lateral Boreholes in CBM Multi-Lateral Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(4): 78-82. DOI: 10.11911/syztjs.2019121
Citation: TAN Tianyu, LI Hao, LI Zongyuan, JIANG Haitao, HE Jingchao. Re-Entry Screen Completion Technology for Multi-Lateral Boreholes in CBM Multi-Lateral Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(4): 78-82. DOI: 10.11911/syztjs.2019121

煤层气多分支水平井分支井眼重入筛管完井技术

基金项目: 国家科技重大专项“煤层气新型水平井钻完井关键技术与工具研究”(编号:2016ZX05022-004)和“沁水盆地高煤阶煤层气高效开发示范工程”(编号:2017ZX05064)联合资助
详细信息
    作者简介:

    谭天宇(1986—),男,四川武胜人,2009年毕业于东华大学软件工程专业,工程师,主要从事非常规油气钻井完井技术研究。E-mail:tantianyu@cnpc.com.cn

  • 中图分类号: TE257+.9

Re-Entry Screen Completion Technology for Multi-Lateral Boreholes in CBM Multi-Lateral Horizontal Wells

  • 摘要:

    为了解决煤层气多分支水平井分支井眼因重入困难、不能下入筛管、无法实现筛管完井的问题,研制了空心结构的筛管完井重入引导工具,优选了煤层气多分支水平井完井方式,给出了分支井眼重入筛管完井施工步骤,形成了煤层气多分支水平井分支井眼重入筛管完井技术。该技术在沁试12平1井的现场试验结果表明,对比重入引导工具与钻进时MWD测得的井眼轨迹数据可判断是否重入成功,筛管能顺利通过筛管完井重入引导工具下至分支井眼,实现分支井眼筛管完井。研究结果表明,煤层气多分支水平井分支井眼重入筛管完井技术,解决了煤层气水平井分支井眼无法重入、不能实现筛管完井的问题。

    Abstract:

    In order to solve problems caused by difficult re-entry of branched boreholes in CBM multi-lateral horizontal wells, such as the inability to RIH screen and the impossibility to realize the screen completion, a re-entry guide tool for screen completion with hollow structure was developed, the completion technology for multi-lateral borehole in CBM multi-lateral horizontal wells was optimized, and the steps of re-entry screen completion for multi-lateral borehole were proposed, thereby forming the re-entry screen completion technology for multi-lateral CBM horizontal wells. The technology was tested in Well Qinshi 12-1; and the test results showed that by comparing the re-entry guide tool with the borehole trajectory data measured by MWD, and it could be judged whether the re-entry was successful, and the screen could be RIH to the branched wellbore to achieve the screen completion. The results also showed that the re-entry screen completion technology for multi-lateral CBM horizontal wells solved the problems of difficult re-entry and the screen completion.

  • 国内煤层气储层(即煤层)分为低煤阶和高煤阶2类。高煤阶煤层具有“三低”(低压、低渗透、低饱和度)特点,煤层不稳定。高阶煤层气主要采用多分支水平井开发[1-5],但由于煤层机械强度低,排采过程中主井眼及分支井眼周围的煤层随着储层压力降低,易发生破碎、坍塌,导致部分多分支水平井产气效果差,有的产气量一直很低,有的前期产气量高,但后期递减严重且无法恢复。目前,采用将多分支水平井主井眼设置在顶板泥岩中或在主井眼下入钢制筛管(套管)的措施,实现了主井眼采气通道长期有效;但由于分支井眼间存在夹壁墙,重入困难,分支井眼还不能下入筛管,实现筛管完井,目前聚乙烯(PE)筛管完井方式只应用于煤层气U形井[6-8]。为使多分支水平井分支井眼长期有效,延长单井生产寿命,笔者研制了筛管完井重入引导工具,并在沁水盆地沁试12平1井进行了现场试验,实现了主井眼和分支井眼的重入。

    1)主井眼、分支井眼重入困难。煤层气多分支水平井钻井过程中分支井眼在主井眼上侧钻,完钻后存在多个夹壁墙(见图1),夹壁墙容易垮塌,造成主井眼、分支井眼重入困难。

    图  1  多分支水平井井身结构示意
    Figure  1.  The casing program of multi-lateral horizontal wells

    2)主井眼、分支井眼采用相同尺寸钻头钻进完成后,后续主井眼、分支井眼重入困难;相邻分支井眼侧钻点较近,易形成大肚子井眼,造成主井眼、分支井眼重入困难;近端分支井眼完成后,钻进主井眼和分支井眼产生的岩屑和固壁剂会堵塞已完成的分支井眼,造成分支井眼重入困难。

    3)主井眼和分支井眼的完井管柱下入困难。目前,煤层气U形井的PE筛管完井工艺为:首先将光钻杆下至井底,将PE筛管从钻杆水眼下到煤层水平段;然后起出钻杆,将PE筛管留于井内,支撑煤层井壁。多分支水平井必须利用专用工具引导PE筛管重入主井眼和分支井眼,而钻具水眼通道被定向仪器占用,PE筛管无法从钻具水眼内下入。

    在传统下筛管作业的基础上,研制了钻具重入引导工具。用空心导引鞋替代钻具组合中的钻头,用弯接头替代螺杆钻具,用空心引导工具替代MWD,形成了筛管完井重入引导工具,如图2所示。

    图  2  筛管重入完井引导工具结构示意
    Figure  2.  Structural diagram of screen re-entry completion guide tools

    筛管重入完井引导工具的工作原理为:空心导引鞋、弯接头和空心引导工具的尺寸分别与钻进钻具组合中的钻头、螺杆、MWD相同,利用空心引导工具测量井斜角、方位角和井深,并与实钻时的井深、井斜角和方位角进行比对,判断空心导引鞋位置,引导钻具重入分支井眼,通过对比空心引导工具测量的井眼轨迹数据和实钻井眼轨迹数据确定重入成功后,下入筛管。该工具的特点是:

    1)能准确引导钻具重入。该工具能准确测得钻具顶部的方位角、井斜角,将其与钻进时的方位角和井斜角进行对比,可判断钻具是否重入成功。

    2)由于筛管要从钻具水眼中进入煤层,而传统的MWD占据了水眼,筛管无法通过。因此,引导工具采用空心结构,MWD的传感器安装在引导工具内壁上,使其水眼直径大于55 mm,便于ϕ50.8 mm筛管通过。

    3)该工具没有钻井液和电缆通道,采用电磁波传输测量信号。

    4)为能与钻进时的井斜角和方位角进行对比,空心引导工具下方接弯接头和导引鞋的长度与螺杆钻具和钻头的长度相同,下部钻具组合与钻进时相同;为便于筛管通过弯接头和导引鞋,弯接头和导引鞋均采用了空心结构(分别如图3图4所示)。

    图  3  导引鞋
    Figure  3.  Guide shoes
    图  4  弯接头
    Figure  4.  Elbow connection

    空心导引鞋、弯接头和空心引导工具与实钻时的钻头、螺杆、MWD尺寸相同,将引导工具测得的井深、井斜角和方位角与实钻时的井深、井斜角、方位角进行比对,判断空心导引鞋的位置,引导钻具重入分支井眼,对比引导工具测量的井眼轨迹数据和钻进井眼轨迹数据,确定重入成功后,下入PE筛管。

    1)渐进式PE筛管完井。钻完一个分支井眼,下入PE筛管完井,钻井与完井交替进行。该方式存在以下问题:因先完成最近端的分支井眼,钻进后面主井眼及分支井眼时岩屑会堵塞近端的分支井眼,无法解决分支井眼的堵塞问题;需多次起下钻,交替完成钻进与下筛管作业;多次起下钻进行钻具重入及摸索钻具的下入位置,影响整体时效。

    2)整体筛管完井。先钻完主井眼,从主井眼远端钻分支井眼,每钻完一个分支井眼及其上的脉支井眼起钻并更换钻具组合,重入分支井眼进行筛管完井。其优点是分支井眼重入容易;缺点是需多次起下钻,影响整体时效。

    3)集体重入完井。钻完所有分支井眼、脉支井眼后,起钻更换钻具组合,分别重入各个分支井眼,进行筛管完井。其优点是钻井完成后,只需一次起下钻,节约时效。其缺点是分支井眼间存在夹壁墙,重入困难。

    根据现场实际地质情况和生产需求,为了提高生产时效,避免主井眼因受钻井液长期浸泡造成垮塌,选择集体重入完井方式。集体重入完井步骤(见图5)为:

    1)将引导钻具组合下入到主井眼,重入引导工具测量井深、井斜角和方位角,并与井眼轨迹数据进行比对,判断趾端L1分支井眼与主井眼的交点(A点),准备进行重入(见图5(a))。

    图  5  集体重入筛管完井示意
    Figure  5.  Schematic of a collective re-entry screen completion

    2)将引导钻具组合往前推送,实时测量井斜角和方位角,并与井眼轨迹数据进行比对,确定重入成功后下至B点(见图5(b))。

    3)从引导钻具组合的水眼中下入ϕ50.8 mm PE筛管(见图5(c))。

    4)锚定ϕ50.8 mm PE筛管,上提引导钻具组合,按上述步骤进行L2分支井眼筛管下入工作(见图5(d)),依次完成所有分支井眼下入筛管施工。

    沁试12平1井是山西沁水盆地部署的一口仿树形多分支水平井,钻探目的层为山西组3#煤层,主要钻探目的是探索多分支水平井在该区煤层气开发中的适应性,同时利用多分支水平井提高该区的单井产气能力。该井设计完成主井眼、15个分支井眼和40个脉支井眼,设计总进尺13 304.38 m(见图6)。该井在M主井眼和L3分支井眼应用分支井重入引导工具进行了井眼重入现场试验,并在L3分支井眼进行了重入筛管完井试验(见图6)。

    图  6  沁试12平1井井身结构示意
    Figure  6.  Casing program for the Well Qinshi 12-1

    该井钻至井深1 273.00 m时与沁试12平1-V1井连通,钻至井深1 902.50 m时与沁试12平1-V2井连通,钻至井深2 182.00 m完钻,主井眼水平段总进尺991.00 m,煤层进尺216.00 m。

    重入引导工具出套管后,将重入引导工具测得的井眼轨迹数据与钻进时MWD测得的井眼轨迹数据进行比对,结果见图7。重入引导钻具组合为:空心导引鞋+ϕ121.0 mm弯接头+转换短节+ϕ135.0 mm空心引导工具+转换短节+ϕ88.9 mm无磁钻杆+ ϕ88.9 mm钻杆。

    图  7  M主井眼重入引导工具测量井眼轨迹与MWD测量井眼轨迹的对比
    Figure  7.  Comparison on the re-entry tool measurement borehole trajectory and MWD borehole trajectory of M main hole

    图7可以看出,重入引导工具测得的井眼轨迹数据与钻进时MWD测得的井眼轨迹数据基本相同,证明钻具重入主井眼成功。

    L3分支井眼总进尺262.00 m,1 935.00~2 182.00 m井段处于煤层中。

    重入引导钻具组合下至井深1 920.00 m处,重入L3分支井眼,每隔5.00~10.00 m测量一组井斜角和方位角,与钻进时MWD测得的井眼轨迹数据进行对比,以判断重入工具的位置。表1为该分支井眼处于煤层井段重入引导工具测得的井眼轨迹数据与MWD测得井眼轨迹数据的对比结果。

    表  1  L3分支井眼重入井眼轨迹数据与钻进井眼轨迹数据的对比
    Table  1.  Comparison on the re-entry borehole trajectory data and drilled borehole trajectory data of L3 branch borehole
    井深/m井斜角/(°) 方位角/(°)
    MWD重入引导工具 MWD重入引导工具
    1 920.0094.4294.4 337.97337.9
    1 937.0090.5790.2 11.30 11.0
    2 092.00 93.9193.4 35.30 35.8
    2 171.0090.9390.4 356.30356.2
    下载: 导出CSV 
    | 显示表格

    表1可以看出,重入引导工具测得的井眼轨迹数据与MWD测得的井眼轨迹数据重合,表明重入成功。

    下钻至井深2 179.00 m循环完毕后,助推器连接到井口的钻杆上。将带矛头的PE筛管送入助推器内,用助推器将PE筛管送入钻杆内之后,接上顶驱,先上下活动钻具组合,正常之后,再将钻具组合放回原处,以5.0 L/s排量顶通钻具水眼,2 min后将排量调至正常钻进状态时的排量(15.0 L/s),此时泵压为6.0 MPa,泵送筛管15 min后,泵压升至8.5 MPa,说明此时PE筛管矛头刚出钻杆,进入地层;起钻至井深1 919.00 m(预计PE筛管下入到1 931.00~2 180.00 m井段)时,相当于钻具组合下部距离PE筛管顶部约12.00 m,开泵后循环泵压为5.8 MPa。说明PE筛管已经完全出钻杆,进入L3分支井眼。

    1)研制了多分支水平井筛管完井重入引导工具,优选了多分支水平井筛管完井方式,给出了重入筛管完井施工步骤。

    2)现场试验表明,重入引导工具能引导钻具重入主井眼和分支井眼,保证分支井眼顺利实施筛管完井,为煤层气后期排采提供稳定的通道。

    3)多分支水平井重入筛管完井技术目前仅在1口多分支水平井进行了现场试验,需进一步增加现场试验,以不断优化完善该技术,提高煤层气分支水平井的完井效果。

  • 图  1   多分支水平井井身结构示意

    Figure  1.   The casing program of multi-lateral horizontal wells

    图  2   筛管重入完井引导工具结构示意

    Figure  2.   Structural diagram of screen re-entry completion guide tools

    图  3   导引鞋

    Figure  3.   Guide shoes

    图  4   弯接头

    Figure  4.   Elbow connection

    图  5   集体重入筛管完井示意

    Figure  5.   Schematic of a collective re-entry screen completion

    图  6   沁试12平1井井身结构示意

    Figure  6.   Casing program for the Well Qinshi 12-1

    图  7   M主井眼重入引导工具测量井眼轨迹与MWD测量井眼轨迹的对比

    Figure  7.   Comparison on the re-entry tool measurement borehole trajectory and MWD borehole trajectory of M main hole

    表  1   L3分支井眼重入井眼轨迹数据与钻进井眼轨迹数据的对比

    Table  1   Comparison on the re-entry borehole trajectory data and drilled borehole trajectory data of L3 branch borehole

    井深/m井斜角/(°) 方位角/(°)
    MWD重入引导工具 MWD重入引导工具
    1 920.0094.4294.4 337.97337.9
    1 937.0090.5790.2 11.30 11.0
    2 092.00 93.9193.4 35.30 35.8
    2 171.0090.9390.4 356.30356.2
    下载: 导出CSV
  • [1] 付利,申远思,王开龙,等. 煤层气水平井PE筛管完井用泵送工具推进力研究[J]. 石油钻探技术, 2017, 45(1): 68–72.

    FU Li, SHEN Yuansi, WANG Kailong, et al. Research on the driving force of the pumping down tool for a PE screen completion in CBM horizontal wells[J]. Petroleum Drilling Techniques, 2017, 45(1): 68–72.

    [2] 赵永哲. 松软煤层水平对接井筛管完井工艺技术[J]. 煤田地质与勘探, 2014, 42(4): 100–102. doi: 10.3969/j.issn.1001-1986.2014.04.023

    ZHAO Yongzhe. Well completion technology by screen pipe for horizontal-intersected well in soft coal seam[J]. Coal Geology & Exploration, 2014, 42(4): 100–102. doi: 10.3969/j.issn.1001-1986.2014.04.023

    [3] 张波,张彬,陈必武,等. 煤层气水平井筛管完井工艺实践[J]. 煤炭技术, 2017, 36(11): 50–51.

    ZHANG Bo, ZHANG Bin, CHEN Biwu, et al. Practice in screen casing completion of CBM horizontal well[J]. Coal Technology, 2017, 36(11): 50–51.

    [4] 李伯尧,王洪亮,印中华,等. 织金煤层气浅层大位移水平井钻完井技术[J]. 石油钻采工艺, 2019, 41(4): 430–434.

    LI Boyao, WANG Hongliang, YIN Zhonghua, et al. Drilling and completion technologies for extended-reach shallow CBM wells in Zhijin[J]. Oil Drilling & Production Technology, 2019, 41(4): 430–434.

    [5] 高应运. 延川南煤层气田V形水平井组压裂技术[J]. 石油钻探技术, 2016, 44(3): 83–87.

    GAO Yingyun. Fracturing technology for a V-shaped horizontal well cluster in the Yanchuannan CBM Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 83–87.

    [6] 申瑞臣,时文,徐义,等. 煤层气U型井PE筛管完井泵送方案[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 96–99, 104.

    SHEN Ruichen, SHI Wen, XU Yi, et al. PE screen completion for U-shaped coal-bed methane wells with pumping method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5): 96–99, 104.

    [7] 时文,申瑞臣,屈平,等. 煤层气井完井用PE筛管的地质适应性分析[J]. 天然气工业, 2013, 3(4): 85–90. doi: 10.3787/j.issn.1000-0976.2013.04.015

    SHI Wen, SHEN Ruichen, QU Ping, et al. Geological adaptability analysis of PE screen pipes for coalbed methane well completion[J]. Natural Gas Industry, 2013, 3(4): 85–90. doi: 10.3787/j.issn.1000-0976.2013.04.015

    [8] 付利,申瑞臣,苏海洋,等. 煤层气水平井完井用塑料筛管优化设计[J]. 石油机械, 2012, 40(8): 47–51.

    FU Li, SHEN Ruichen, SU Haiyang, et al. Optimized design of platic screen for coal bed methane horizontal well completion[J]. China Petroleum Machinery, 2012, 40(8): 47–51.

  • 期刊类型引用(9)

    1. 张金宝. 钻杆内水力输送分组筛管自动对接技术试验研究. 煤矿安全. 2024(07): 206-212 . 百度学术
    2. 李小刚,唐政,朱静怡,杨兆中,李扬,谢鹏,廖宇. 深层煤岩气压裂研究进展与展望. 天然气工业. 2024(10): 126-139 . 百度学术
    3. 刘晗. ?170 mm四级分支井重入工具丢手装置研制. 石油矿场机械. 2023(01): 81-86 . 百度学术
    4. 陈浩. 水平分支井轮采工艺在曹妃甸油田的应用. 石化技术. 2022(03): 71-72 . 百度学术
    5. 李涛,徐卫强,苏强,曾知昊,杨兆亮. 四川盆地高温高压含硫气井五级分支井钻完井技术. 石油钻采工艺. 2022(03): 269-275 . 百度学术
    6. 黄中伟,李国富,杨睿月,李根生. 我国煤层气开发技术现状与发展趋势. 煤炭学报. 2022(09): 3212-3238 . 百度学术
    7. 刘智. 煤矿井下护孔筛管旋转推送装置研制. 煤矿机电. 2022(05): 54-56+70 . 百度学术
    8. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 . 百度学术
    9. 苏良银,常笃,杨海恩,段鹏辉,薛小佳,白建文. 低渗透油藏侧钻水平井小井眼分段多簇压裂技术. 石油钻探技术. 2020(06): 94-98 . 本站查看

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  1381
  • HTML全文浏览量:  513
  • PDF下载量:  115
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2020-03-26
  • 网络出版日期:  2020-04-26
  • 刊出日期:  2020-06-30

目录

/

返回文章
返回