Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field
-
摘要: 针对顺北油气田一区三开钻遇的志留系地层承压能力低、井漏严重,固井一次性封固段长、漏失率高的问题,研究了长封固段防漏固井技术。从地质因素和工程因素2方面进行了原因分析,明确了技术需求。优选高抗挤空心玻璃微珠作为减轻剂,利用颗粒级配原理研制了低密度水泥浆。采用在隔离液中加入不同尺寸纤维的方式,提高地层承压能力;基于对极易漏层的准确判断,开发了适合超深井长封固段尾管固井的“正注反挤”防漏固井工艺。室内试验结果显示:在100 MPa液柱压力下低密度水泥浆的密度增幅小于0.03 kg/L,水泥石抗压强度高于15 MPa,具有良好的承压能力和较高的抗压强度;堵漏型隔离液可将地层承压能力提高1.5 MPa。“正注反挤”固井工艺与低密度水泥浆、堵漏型隔离液结合形成的顺北油气田一区超深井三开长封固段固井技术,在该区10多口井ϕ177.8 mm尾管固井中进行了应用,全部实现了水泥浆完全封固环空,没有漏封井段,较好地解决了固井漏失问题。研究与应用结果表明,顺北油气田一区超深井三开长封固段固井技术效果显著,可解决该区存在的固井难题。Abstract: With a goal of overcoming cementing challenges encountered in drilling the section below technical casing in the No.1 Area of the Shunbei Oil and Gas Field, an anti-leakage cementing technology for long-sealing section was studied. Problems to be overcome included low pressure-bearing capacity of Silurian strata, serious leakage, long sealing section of primary cementing and high leakage rate. Causes were analyzed from geological and engineering aspects, and technical requirements were clarified. High strength hollow glass microspheres were selected as the weight reducer, and a low-density cement slurry was developed based on particle grading principle. Fibers of different sizes in the isolation fluid were used to improve the pressure bearing capacity of formation. In addition, a“normal injection and reverse squeezing”anti-leakage cementing technique was developed to optimize the performance of the liner cementing of long sealing section in ultra-deep wells. The results of laboratory tests show that the density increase of low-density cement slurry was less than 0.03 kg/L under 100 MPa. The cement stone had a good pressure bearing capacity and compressivestrength, which was over 15 MPa. The pressure-bearing capacity of formation was increased by 1.5 MPa by using an anti-leakage spacer fluid. An anti-leakage cementing technique for the long sealing well section below the technical casing in the ultra-deep wells in the No.1 Area of the Shunbei Oil and Gas Field is formed by the combination of“normal injection and reverse squeezing”cementing process, low-density cement slurry, and plugging-type spacer fluid. This technology has been applied in the ϕ177.8 mm liner cementing jobs in more than 10 wells with annulus of those wells thoroughly sealed by cement slurry without leakage section, by which the cementing leakage problem was solved. The results of research and applications show that this technology has achieved a significant anti-leakage effect, and it can effectively solve the cementing problems in this area.
-
-
表 1 高抗挤空心玻璃微珠低密度水泥浆的性能
Table 1 Performance of high strength hollow glass microspheres low density cement slurry
水泥浆密度/
(kg·L–1)温度/
℃流动度/
cm六速黏度计读数 API滤失量/
mL稠化时间/
min水泥石抗压强度/MPa 上下层密度差/
(kg·L–1)ϕ600 ϕ300 ϕ200 ϕ100 ϕ6 ϕ3 3 d 7 d 1.45 135 19.5 256 153 114 69 6 4 44 380 18.1 20.6 0.02 1.48 135 20.5 237 139 100 56 5 3 46 433 15.3 17.2 0.01 1.50 135 20.0 242 146 109 66 10 7 38 416 17.8 21.5 0 表 2 正注固井水泥浆的主要性能
Table 2 Main performance of cement slurry for normal injection cementing
浆体 水泥浆密度/
(kg·L–1)温度/
℃流动度/
cm六速黏度计读数 API滤失量/
mL稠化时间/
minϕ600 ϕ300 ϕ200 ϕ100 ϕ6 ϕ3 领浆 1.50 131 21 176 98 70 38 3 2 30 498 尾浆 1.88 131 21 231 130 91 50 4 3 24 232 -
[1] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831–839. doi: 10.11743/ogg20170501 JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831–839. doi: 10.11743/ogg20170501
[2] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[3] 刘彪,潘丽娟,易浩,等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺, 2016, 38(3): 296–301. LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301.
[4] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术, 2016, 44(6): 17–23. JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23.
[5] 张云华,蒋卓颖,李雨威,等. 粉煤灰低密度水泥浆在塔河油田堵漏中的应用[J]. 石油与天然气化工, 2018, 47(1): 79–82. ZHANG Yunhua, JIANG Zhuoying, LI Yuwei, et al. Utilization of fly ash low density cement slurry for plugging in Tahe Oifield[J]. Chemical Engineering of Oil & Gas, 2018, 47(1): 79–82.
[6] 杨广国,穆海鹏,高元,等. 活化粉煤灰低密度水泥浆体系研究及应用[J]. 科学技术与工程, 2014, 14(17): 193–196. doi: 10.3969/j.issn.1671-1815.2014.17.038 YANG Guangguo, MU Haipeng, GAO Yuan, et al. Research and application of low-density slurry with activated fly ash[J]. Science Technology and Engineering, 2014, 14(17): 193–196. doi: 10.3969/j.issn.1671-1815.2014.17.038
[7] 邹书强,王建云,张红卫,等. 顺北鹰1井ϕ444.5 mm 长裸眼固井技术[J]. 石油钻探技术, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008 ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, et al. ϕ444.5 mm long openhole cementing technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008
[8] 韩卫华. 漂珠对低密度水泥浆密度的影响[J]. 钻井液与完井液, 2004, 21(5): 56–57. doi: 10.3969/j.issn.1001-5620.2004.05.016 HAN Weihua. Influence of Microsphere on the density of light-weight cement slurry[J]. Drilling Fluid & Completion Fluid, 2004, 21(5): 56–57. doi: 10.3969/j.issn.1001-5620.2004.05.016
[9] 林永学,王伟吉,金军斌. 顺北油气田鹰1 井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068 LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
[10] 李坤,徐孝思,黄柏宗. 紧密堆积优化水泥浆体系的优势与应用[J]. 钻井液与完井液, 2002, 19(1): 1–6, 9. doi: 10.3969/j.issn.1001-5620.2002.01.001 LI Kun, XU Xiaosi, HUANG Bozong. Advantages and application of the novel cement slurry system developed by the concept of high packing density[J]. Drilling Fluid & Completion Fluid, 2002, 19(1): 1–6, 9. doi: 10.3969/j.issn.1001-5620.2002.01.001
[11] 周仕明. 微硅漂珠复合低密度水泥体系的探讨[J]. 钻井液与完井液, 1999, 16(6): 27–29. ZHOU Shiming. A composite light cement system[J]. Drilling Fluid & Completion Fluid, 1999, 16(6): 27–29.
[12] 杨海波,曹成章,冯德杰,等. 新型低密度水泥减轻材料SXJ-1的研制及应用[J]. 石油钻探技术, 2017, 45(4): 59–64. YANG Haibo, CAO Chengzhang, FENG Dejie, et al. The development and application of a new low density cement reducer SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4): 59–64.
[13] 罗杨,陈大钧,许桂莉,等. 高强度超低密度水泥浆体系实验研究[J]. 石油钻探技术, 2009, 37(5): 66–71. doi: 10.3969/j.issn.1001-0890.2009.05.015 LUO Yang, CHEN Dajun, XU Guili, et al. Lab experiment on high-intensity ultra-low-density cement slurry[J]. Petroleum Drilling Techniques, 2009, 37(5): 66–71. doi: 10.3969/j.issn.1001-0890.2009.05.015
[14] 何瑞兵,董平华,李治衡,等. 生物灰低密度水泥浆体系室内研究[J]. 长江大学学报(自然科学版), 2020, 17(3): 43–47. HE Ruibing, DONG Pinghua, LI Zhiheng, et al. Laboratory study on low temperature and low density cement slurry system of biological ash[J]. Journal of Yangtze University(Natural Science Edition), 2020, 17(3): 43–47.
[15] 初永涛. MS型堵漏隔离液的研究与应用[J]. 石油钻探技术, 2013, 41(3): 89–93. doi: 10.3969/j.issn.1001-0890.2013.03.017 CHU Yongtao. Research and application of MS spacer fluid for plugging[J]. Petroleum Drilling Techniques, 2013, 41(3): 89–93. doi: 10.3969/j.issn.1001-0890.2013.03.017
[16] 丁志伟,李嘉奇,赵靖影,等. 窄密度窗口正注反挤低密度水泥浆固井技术[J]. 钻井液与完井液, 2019, 36(6): 759–765. DING Zhiwei, LI Jiaqi, ZHAO Jingying, et al. Normal spotting and reverse squeezing of low-density cement slurries in wells with narrow safe drilling windows[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 759–765.
-
期刊类型引用(13)
1. 肖平. 振荡螺杆钻具内部流场仿真分析及室内试验. 石油机械. 2023(09): 41-47 . 百度学术
2. 史配铭,倪华峰,石崇东,王学枫,王万庆,屈艳平. 苏里格致密气藏超长水平段水平井钻井完井关键技术. 石油钻探技术. 2022(01): 13-21 . 本站查看
3. 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验. 石油钻探技术. 2022(01): 71-75 . 本站查看
4. 艾白布·阿不力米提,庞德新,刘永红,麦尔耶姆古丽·安外尔,孙长友,郭新维,陈波. 井下自激脉冲射流增能装置设计及其射流冲击特性. 江苏大学学报(自然科学版). 2022(04): 472-480 . 百度学术
5. 乔凌云,王亮,芦琳,李鸿斌,张超,周云,马姣姣. 连续油管水力振荡器断裂失效分析. 焊管. 2022(07): 32-36+41 . 百度学术
6. 张飞. 自激式无反馈流道涡流水力振荡器分析. 佳木斯大学学报(自然科学版). 2022(04): 96-98 . 百度学术
7. 李俊雄,夏成宇,韩雪莹,郭良林,伊亚辉,关明. PB-BBD响应面法优化全金属水力振荡器性能的研究. 机床与液压. 2022(18): 35-39 . 百度学术
8. 李勇政,陈涛,江川,杜江. 四川盆地磨溪–高石梯区块定向钻井关键技术. 石油钻探技术. 2021(02): 26-31 . 本站查看
9. 陈新勇,徐明磊,马樱,徐雅萍,赵博,韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术. 石油钻探技术. 2021(02): 14-19 . 本站查看
10. 史配铭,李晓明,倪华峰,石崇东,姜庆波,程华林. 苏里格气田水平井井身结构优化及钻井配套技术. 石油钻探技术. 2021(06): 29-36 . 本站查看
11. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看
12. 常腾腾,邹俊,王瑜,王志乔,夏柏如. 基于涡轮-转阀驱动的小直径水力振荡减阻器设计研究. 地质与勘探. 2020(04): 832-837 . 百度学术
13. 王传鸿,邹刚,周歆,杨小城. 自激式水力振荡器结构性能及其振动特性研究. 石油机械. 2020(11): 16-21 . 百度学术
其他类型引用(3)