Key Technologies Involved in Karstic Geothermal Reservoir Drilling in the Beijing-Tianjin-Hebei Region
-
摘要: 京津冀岩溶热储钻井存在以下技术难点:风化壳判断不准,易发生失返性漏失,导致垮塌埋钻;岩溶热储胶结差,取心收获率低;基岩储层非均质性强、可钻性差,钻头选型困难、机械钻速低。因此,利用XRF元素录井技术准确判断风化壳,防止风化壳发生失返性漏失,提高成井率;选用JS-6型全封销挂式多用取心筒与一体化岩心爪配合提高取心收获率;针对基岩储层的岩性和可钻性优选钻头型号和进行个性化设计,提高基岩储层的机械钻速;针对钻井过程易发生卡钻和漏失的问题,制定防卡和堵漏技术措施,最终形成了京津冀岩溶热储钻井关键技术。京津冀岩溶热储钻井应用该关键技术后成井率达到100%,钻井周期缩短10%以上,钻井成本降低12%。研究和实践表明,京津冀岩溶热储钻井关键技术可以解决京津冀岩溶热储钻井存在的技术难点,为京津冀地区地热资源的勘探开发提供技术支持。Abstract: Technical difficulties are encountered in the drilling of karstic geothermal reservoir in the Beijing-Tianjin-Hebei region. Lost circulation is frequent due to misjudgment of weathering crust, causing burial of drill bits induced by collapse; poor cementation of karstic geothermal reservoirs hinders core recovery; bedrock reservoirs present strong heterogeneity and poor drillability; bit selection requires much efforts and the rate of penetration (ROP) is low. Therefore, X-ray fluorescence (XRF) element logging has been used to accurately assess the weathering crust, so as to avoid lost circulation, and thus increase the well completion rate. The core recovery was improved by selecting JS-6 type fully-sealed pin-hanging multi-purpose coring barrel and an integrated core catcher, and the ROP was raised in bedrock reservoirs through optimal and customized design of bits based on the lithology and drillability of bedrock reservoirs. In order to solve the problems of sticking and lost circulation in the drilling process, corresponding technical measures were introduced, and finally the key technologies for karstic geothermal reservoir drilling in the Beijing-Tianjin-Hebei Region were developed. After applying these technologies, the well completion rate reaches 100% in the Beijing-Tianjin-Hebei Region. In addition, the drilling cycle is shortened by more than 10%, and the drilling cost is reduced by 12%. Research and practice showed that these key technologies can solve the problems of drilling in karstic geothermal reservoirs, and provide technical support for the exploration and development of geothermal resources in this region.
-
-
表 1 容东1井取心记录
Table 1 Coring record of Well Rongdong 1
取心井段/m 进尺/m 岩心长/m 机械钻速/(m·h–1) 取心率,% 钻头型号 取心工具 1 000.00~1 003.40 3.40 0.62 1.44 18.20 PMC037-8100 Rb-8100 1 600.00~1 603.60 3.60 3.60 2.61 100.00 GC406T JS-6 1 800.61~1 803.77 4.10 4.10 2.82 100.00 GC406T JS-6 -
[1] NB/T 10097—2018地热能术语[S]. 2018-10-29. NB/T 10097—2018 Terminology of geothermai energy[S]. 2018-10-29.
[2] 张海雄. 雄安新区大王探采1井钻井设计与实践[J]. 科学与技术,2019,36(6):248–249. ZHANG Haixiong. Drilling design and drilling practice of well Tancai-1 in Xiongan New Area[J]. Science and Technology, 2019, 36(6): 248–249.
[3] 思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术,2019,47(4):35–40. doi: 10.11911/syztjs.2019042 SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042
[4] 李鹏威,何治亮,罗平,等. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素[J]. 石油与天然气地质,2020,41(1):21–36. LI Pengwei, HE Zhiliang, LUO Ping, et al. Characteristics of and main factors controlling the dolomite reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System the north of North China[J]. Oil & Gas Geology, 2020, 41(1): 21–36.
[5] 陈恭洋, 王志战. 录井地质学[M]. 北京: 石油工业出版社, 2016: 143-145. CHEN Gongyang, WANG Zhizhan. Mud logging geology[M]. Beijing: Petroleum Industry Press, 2016: 143-145.
[6] 唐诚,王志战,陈明,等. 基于X射线荧光元素录井的深层页岩气精准地质导向技术[J]. 石油钻探技术,2019,47(6):103–110. doi: 10.11911/syztjs.2019135 TANG Cheng, WANG Zhizhan, CHEN Ming, et al. Accurate geosteering technology for deep shale gas based on XRF element mud logging[J]. Petroleum Drilling Techniques, 2019, 47(6): 103–110. doi: 10.11911/syztjs.2019135
[7] 孙祥荣. XRF元素录井在武隆区块页岩气勘探开发中的应用[J]. 录井工程,2017,28(2):33–38. doi: 10.3969/j.issn.1672-9803.2017.02.008 SUN Xiangrong. Application of XRF element logging to shale gas exploration and development in Wulong Block[J]. Mud Logging Engineering, 2017, 28(2): 33–38. doi: 10.3969/j.issn.1672-9803.2017.02.008
[8] 王培义,马鹏鹏,张贤印,等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术,2017,45(4):27–32. WANG Peiyi, MA Pengpeng, ZHANG Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–32.
[9] 曹华庆,龙志平. 苏北盆地戴南组和阜宁组地层取心关键技术[J]. 石油钻探技术,2019,47(2):28–33. doi: 10.11911/syztjs.2019019 CAO Huaqing, LONG Zhiping. Key coring technologies for the Dainan Formation and Funing Formation in North Jiangsu Basin[J]. Petroleum Drilling Techniques, 2019, 47(2): 28–33. doi: 10.11911/syztjs.2019019
[10] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂试验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018 LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018
[11] 叶顺友,杨灿,王海斌,等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术,2019,47(4):10–16. doi: 10.11911/syztjs.2019030 YE Shunyou, YANG Can, WANG Haibin, et al. Key drilling technologies for hot rock in Well HD-1R in the Hainan Fushan Sag[J]. Petroleum Drilling Techniques, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030
-
期刊类型引用(8)
1. 刘曼宇,李早元,刘伟,刘洋,黄盛,杨焱岚,陈俊文. 空心玻璃微珠低密度水泥有效弹性模量计算与分析. 断块油气田. 2024(05): 900-908+915 . 百度学术
2. 关志刚,邓宽海,吴彦先,林志伟,林元华. 非常规油气井压裂过程中水泥环完整性实验评价. 西南石油大学学报(自然科学版). 2023(04): 121-132 . 百度学术
3. 丁士东,刘奎,刘小刚,周仕明,陶谦,李鹏程. 环空加压固井对双层套管水泥环界面径向应力的影响. 石油钻探技术. 2022(01): 30-37 . 本站查看
4. 吴天乾,宋文宇,谭凌方,张军义,杨春文,郭胜来. 超低密度水泥固井质量评价方法. 石油钻探技术. 2022(01): 65-70 . 本站查看
5. 路飞飞,于洋,王伟志,李明军. 顺北油气田防漏固井用封隔式分级箍研制与应用. 石油钻探技术. 2022(04): 31-36 . 本站查看
6. 陈晓华,狄伟. 针对裂缝性地层的低密度高强度韧性水泥浆体系研究. 钻井液与完井液. 2021(01): 109-115 . 百度学术
7. 窦益华,韦堃,罗敬兵,王刚庆,李明飞. 水泥环缺失对水平井套管强度安全性影响分析. 石油机械. 2019(09): 17-22 . 百度学术
8. 陈雷,杨红歧,肖京男,周仕明,初永涛,魏钊. 杭锦旗区块漂珠-氮气超低密度泡沫水泥固井技术. 石油钻探技术. 2018(03): 34-38 . 本站查看
其他类型引用(3)