Key Technologies of Directional Drilling in the Moxi-Gaoshiti Area of the Sichuan Basin
-
摘要: 四川盆地磨溪–高石梯区块采用“螺杆+MWD”钻进ϕ215.9 mm定向井段时,由于造斜点深、地层温度和钻井液密度高、地层复杂,存在井眼轨迹控制困难、托压严重、机械钻速低等问题。为解决这些问题,通过优化井眼轨道、优选个性化钻头、配套水力振荡器提速工具、制定降摩减阻和预防压差卡钻等技术措施,形成了ϕ215.9 mm定向钻井关键技术。磨溪–高石梯区块ϕ215.9 mm定向井段应用定向钻井关键技术后,降低了井眼轨迹控制难度,有效减轻了定向托压现象,提高了机械钻速,降低了井下卡钻风险,ϕ215.9 mm定向井段的钻井时间由应用前的44.75 d缩短至27.51 d,定向井段提速效果明显。研究和现场应用表明,ϕ215.9 mm定向钻井关键技术能有效解决磨溪–高石梯区块ϕ215.9 mm定向井段钻进过程中存在的技术难点,可在该区块推广应用。Abstract: Due to the deep kick-off point, high formation temperature and drilling fluid density, and complex reservoir characteristics in the Moxi-Gaoshiti area of the Sichuan Basin, directional well drillings with ϕ215.9 mm wellbore combining screw and measurement while drilling (MWD) are faced with many challenges such as difficulty in well trajectory control, severe supporting pressure, and low rate of penetration (ROP). Regarding these problems, new key drilling technologies for directional well with ϕ215.9 mm wellbore were developed by means of optimizing the wellbore trajectory, selecting personalized drill bits, customizing the speed-up tools for hydraulic oscillators, and formulating technical measures such as friction reduction and the prevention of differential pressure sticking. With the applications of directional drilling technologies in the ϕ215.9 mm directional well section of the Moxi-Gaoshiti area in the Sichuan Basin, the trajectory control was strategically optimized, and the directional drag was effectively reduced. Besides, the average ROP was effectively improved, and the risk of downhole sticking was reduced. The drilling time of the ϕ215.9 mm directional well section was shortened from 44.75 d to 27.51 d depending on this technology. The results showed that the key directional drilling technologies with ϕ215.9 mm wellbore could effectively solve the technical difficulties in the drilling of the Moxi-Gaoshiti area, and thus the technology merits promotion in this block.
-
Keywords:
- directional well /
- well trajectory /
- rate of penetration /
- compound bit /
- Moxi-Gaoshiti Block /
- Sichuan Basin
-
-
表 1 磨溪–高石梯区域部分井ϕ215.9 mm定向井段钻井技术指标
Table 1 Technical indexes of directional drilling of partial wells with ϕ215.9 mm well section in Moxi-Gaoshiti Area
井号 井段/m 钻井时间/d 平均机械钻速/
(m·h–1)复合钻进钻速/
(m·h–1)定向井段钻速/
(m·h–1)处理托压时间/
d最大井斜角/
(°)GS001-X4 4430~5356 58.87 1.20 1.77 0.94 9.20 71.49 GS001-X5 4151~5122 50.88 1.56 2.00 0.85 5.34 60.72 GS001-X6 4598~5035 32.46 1.11 1.69 0.91 1.83 54.00 GS001-X7 4360~5390 44.21 1.86 2.35 0.99 4.29 79.60 GS110 4700~5558 50.81 1.46 1.81 0.88 4.64 69.32 MX022-X3 4766~5584 43.56 1.57 1.92 1.19 2.32 63.80 MX009-2-H2 4185~4658 35.50 1.82 3.60 1.21 1.29 75.20 MX009-4-X2 3920~4853 71.20 2.08 2.70 1.30 2.92 74.09 MX009-8-X1 4200~4701 29.30 1.92 2.80 1.20 1.08 70.21 MX008-20-H2 3975~4835 62.36 2.10 2.80 1.40 2.58 64.51 MXX211 4050~4945 53.20 1.37 1.90 1.32 1.06 62.55 表 2 部分井定向井段造斜率优化设计结果
Table 2 Results of build rate optimization design for partial directional wells
井号 造斜点/m 造斜率/((°)·(30m)–1) 高台组 沧浪铺组中部 筇竹寺组下部页岩层 原设计 实际 原设计 优化后 原设计 优化后 原设计 优化后 GS001-X25 4 510.00 4 402.00 3.80 0 4.50 0 4.50 3.70 GS001-X10 4 600.00 4 450.00 5.00 0 5.00 0 0 0.90 GS001-X29 4 535.00 4 320.00 4.00 0 4.00 0 4.00 3.44 GS001-X36 4 420.00 4 350.00 5.00 0 5.00 0 1.56 1.54 MX126 4 600.00 4 671.00 3.28 0 3.28 0 0 1.81 表 3 磨溪–高石梯区块近3年ϕ215.9 mm定向井段钻井指标对比
Table 3 Comparison of directional indexes of ϕ215.9 mm well section in Moxi-Gaoshiti Area in the past three years
年份 作业井次 平均段长/m 钻井时间/d 平均机械钻速/(m·h–1) 平均行程钻速/(m·d–1) 备注 2019 21 771.72 27.51 2.17 28.56 应用后 2018 17 923.98 33.82 2.12 28.07 应用前 2017 7 862.44 44.75 1.71 19.27 应用前 表 4 GS001-X36井井眼轨道优化设计
Table 4 Optimized well trajectory of Well GS001-X36
井深/m 井斜角/(°) 网格方位角/(°) 垂深/m 造斜率/((°)·(30m)–1) 闭合距/m 闭合方位角/(°) 备注 4 350.00 0.49 188.97 4 349.76 0 29.31 142.60 造斜点 4 483.52 22.00 119.20 4 480.00 4.91 53.81 132.28 4 548.23 22.00 119.20 4 540.00 0 77.62 128.23 高台组 4 693.11 45.00 119.20 4 660.00 4.76 156.56 123.66 4 773.11 45.00 119.20 4 716.57 0 213.00 122.48 沧浪铺组中部 5 283.84 71.00 123.74 4 985.00 1.54 642.24 122.02 筇竹寺组 6 181.88 71.32 123.74 5 275.00 0.01 1492.00 123.00 灯四段 -
[1] 汪泽成,王铜山,文龙,等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气,2016,28(2):45–52. WANG Zecheng, WANG Tongshan, WEN Long, et al. Basic geological characteristics and accumulation conditions of Anyue giant gas field, Sichuan Basin[J]. China Offshore Oil and Gas, 2016, 28(2): 45–52.
[2] 杨跃明,文龙,罗冰,等. 四川盆地乐山—龙女寺古隆起震旦系天然气成藏特征[J]. 石油勘探与开发,2016,43(2):179–188. YANG Yueming, WEN Long, LUO Bing, et al. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 179–188.
[3] 薄玉冰. 定向钻井中托压机理分析及对策探讨[J]. 石油钻探技术,2017,45(1):27–32. BO Yubing. The formation mechanism and technical countermeasures for back pressure during directional drilling[J]. Petroleum Drilling Techniques, 2017, 45(1): 27–32.
[4] 涂建平,甘霖,李锐. 磨溪008-H21井斜井段钻井提速实践[J]. 钻采工艺,2017,40(6):32–34. doi: 10.3969/J.ISSN.1006-768X.2017.06.10 TU Jianping, GAN Lin, LI Rui. ROP improvement practice in deviated well section on Well Moxi 008-H21[J]. Drilling & Production Technology, 2017, 40(6): 32–34. doi: 10.3969/J.ISSN.1006-768X.2017.06.10
[5] 章景城,马立君,刘勇,等. 塔里木油田超深井超小井眼定向钻井技术研究与应用[J]. 特种油气藏,2020,27(2):164–168. ZHANG Jingcheng, MA Lijun, LIU Yong, et al. Directional drilling technology for ultra-deep and ultra slim-hole well and its application in Tarim Oilfield[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 164–168.
[6] 胡大梁,严焱诚,李群生,等. 混合钻头在元坝须家河组高研磨性地层的应用[J]. 钻采工艺,2013,36(6):8–12. doi: 10.3969/J.ISSN.1006-768X.2013.06.03 HU Daliang, YAN Yancheng, LI Qunsheng, et al. Application of mixed bit in high abrasive formation of Xujiahe Formation in Yuanba[J]. Drilling & Production Technology, 2013, 36(6): 8–12. doi: 10.3969/J.ISSN.1006-768X.2013.06.03
[7] 余长柏,黎明,刘洋,等. 水力振荡器振动特性的影响因素[J]. 断块油气田,2016,23(6):842–845, 850. YU Changbai, LI Ming, LIU Yang, et al. Influence factors on vibration characteristics of hydraulic oscillator[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 842–845, 850.
[8] 欧阳勇,段志锋,陈春宇,等. 水平井钻井水力振荡器安放位置优化与试验[J]. 钻采工艺,2019,42(5):1–4. doi: 10.3969/J.ISSN.1006-768X.2019.05.01 OUYANG Yong, DUAN Zhifeng, CHEN Chunyu, et al. Location optimization and test of hydro-oscillatorr in horizontal well drilling[J]. Drilling & Production Technology, 2019, 42(5): 1–4. doi: 10.3969/J.ISSN.1006-768X.2019.05.01
[9] 聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79. NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.
[10] 刘伟,杨晓峰,张华. 钻柱扭摆滑动钻井技术在四川油气田的应用[J]. 钻采工艺,2018,41(1):10–12. doi: 10.3969/J.ISSN.1006-768X.2018.01.03 LIU Wei, YANG Xiaofeng, ZHANG Hua. Application of swaying drilling technology in Sichuan Oil and Gas Field[J]. Drilling & Production Technology, 2018, 41(1): 10–12. doi: 10.3969/J.ISSN.1006-768X.2018.01.03
-
期刊类型引用(12)
1. 王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 . 本站查看
2. 康正明,秦浩杰,张意,李新,倪卫宁,李丰波. 基于LSTM神经网络的随钻方位电磁波测井数据反演. 石油钻探技术. 2023(02): 116-124 . 本站查看
3. 仵杰,胡静,云腾. 基于COMSOL软件的半线圈电磁远探测响应特性分析. 西安石油大学学报(自然科学版). 2022(02): 95-101+124 . 百度学术
4. 李杰,雷志鹏,栗林波,任瑞斌,王飞宇,向学艺. 煤矿瓦斯抽采钻孔孔壁电阻率测量方法. 工矿自动化. 2022(05): 32-38 . 百度学术
5. 向学艺,雷志鹏,栗林波,任瑞斌,李杰,王飞宇. 矿用千米定向钻机动作识别方法. 工矿自动化. 2022(09): 140-147+156 . 百度学术
6. 陈鹏,王珺,耿尊博,和丽真,杨国华,祝环芬. 随钻方位电磁波成像快速反演算法研究及应用. 测井技术. 2022(06): 669-675 . 百度学术
7. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
8. 蔡亚琳,柯式镇,康正明,李新,李铭宇,马雪瑞. 随钻电阻率成像测井在裂缝地层中的响应模拟. 石油科学通报. 2020(03): 327-336 . 百度学术
9. 朱祖扬,倪卫宁,张卫,米金泰,郑奕挺. 随钻一体化测井仪平台开发. 石油钻探技术. 2019(01): 118-126 . 本站查看
10. 路保平,倪卫宁. 高精度随钻成像测井关键技术. 石油钻探技术. 2019(03): 148-155 . 本站查看
11. 李铭宇,柯式镇,康正明,李新,倪卫宁. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性. 石油钻探技术. 2018(01): 128-134 . 本站查看
12. 陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究. 石油钻探技术. 2018(03): 114-119 . 本站查看
其他类型引用(5)