水平井高密度钻井液润滑减阻技术研究及现场试验

甄剑武

甄剑武. 水平井高密度钻井液润滑减阻技术研究及现场试验[J]. 石油钻探技术, 2020, 48(5): 55-60. DOI: 10.11911/syztjs.2020076
引用本文: 甄剑武. 水平井高密度钻井液润滑减阻技术研究及现场试验[J]. 石油钻探技术, 2020, 48(5): 55-60. DOI: 10.11911/syztjs.2020076
ZHEN Jianwu. Research and Field Tests of the Lubrication and Friction Reduction Technology of High Density Drilling Fluid in Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(5): 55-60. DOI: 10.11911/syztjs.2020076
Citation: ZHEN Jianwu. Research and Field Tests of the Lubrication and Friction Reduction Technology of High Density Drilling Fluid in Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(5): 55-60. DOI: 10.11911/syztjs.2020076

水平井高密度钻井液润滑减阻技术研究及现场试验

基金项目: 国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061)、国家自然科学基金重大项目“页岩油气高效开发基础理论研究”(编号:51490650)、中国石化科技攻关项目“威荣地区水基钻井液研究与应用”(编号:PE19013)和“深层页岩气高效钻完井技术”(编号:P18058-2)联合资助
详细信息
    作者简介:

    甄剑武(1973—),男,河南汝州人,1995年毕业于河南大学化学工程专业,2011年获中国石油大学(北京)油气井工程专业硕士学位,高级工程师,主要从事钻井液技术研究工作。E-mail:zhenjw.sripe@sinopec.com

  • 中图分类号: TE254+.4

Research and Field Tests of the Lubrication and Friction Reduction Technology of High Density Drilling Fluid in Horizontal Wells

  • 摘要: 高密度水基钻井液在水平井钻井中普遍存在润滑性较差、摩阻较大等问题,为此研究了润滑减阻技术。分析了高密度水基钻井液润滑减阻性能的影响因素,研制了以长链脂肪酸植物油为原料的润滑剂RHJ-1。性能评价结果表明:RHJ-1能使5.0%膨润土浆的极压润滑系数降至0.040;密度2.10 kg/L的钻井液加入RHJ-1后,其润滑系数最低可降至0.105,抗温能力达到150 ℃;钻屑加量为10.0%和15.0%、RHJ-1加量增大至4.0%时,钻井液的润滑系数最大降低率达55.58%。为了保证水平井钻井时高密度钻井液的润滑减阻作用,还采取了控制固相含量、利用加重剂 “轴承”效应等多种技术措施,形成了水平井高密度钻井液润滑减阻技术。该技术在西南某深层页岩气区块WY23-4HF井进行了现场试验,完钻时起钻摩阻仅300 kN,完全满足水平段钻井的润滑减阻要求。研究结果表明,水平井高密度钻井液润滑减阻技术可行,效果良好,值得推广应用。
    Abstract: Due to the poor lubricity and high friction during the drilling of horizontal wells by using high-density water-based drilling fluids, the lubrication and friction reduction technology was studied, and factors influencing the lubricity and friction reduction performance of high-density drilling fluids were analyzed. Subsequently, lubricant Rhj-1, a lubricant with long-chain fatty acid vegetable oil as the raw material, was developed. The performance evaluation results showed that the lubricant RHJ-1 could reduce the extreme pressure lubrication coefficient of 5.0% bentonite slurry to 0.040. The lubrication coefficient of drilling fluid with a density of 2.10 kg/L could be reduced to a minimum of 0.105 after adding lubricant RHJ-1, and its temperature resistance ability could reach 150 ℃. For the drilling fluids with cuttings powder dosages of 10.0% and 15.0%, when the dosage of lubricant RHJ-1 was increased to 4.0%, the maximum reduction rate of drilling fluid lubrication coefficient could reach 55.58%. In order to ensure the lubricity and friction reduction of high-density drilling fluids in drilling horizontal wells, technical measures such as controlling the solid content and making use of the "bearing" effect of weighting agent, etc. were taken, thereby forming the lubrication and friction reduction technology for high-density drilling fluids. This technology was tested in Well WY23-4HF located in the deep shale gas block in Southwest China, and the tripping out friction after drilling was only 300 kN, which fully met the requirements of lubrication and friction reduction in the drilling of horizontal section. The results showed that the high-density drilling fluid technology for lubrication and friction reduction for horizontal wells is feasible and effective, and is worthy for popularization and application.
  • 图  1   植物油红外光谱

    Figure  1.   Infrared spectrum of the vegetable oil

    图  2   RHJ-1的红外光谱

    Figure  2.   Infrared spectrum of the lubricant RHJ-1

    图  3   润滑剂加量对钻井液润滑系数的影响

    Figure  3.   Effect of lubricant dosage on the lubrication coefficient of drilling fluids

    图  4   润滑剂RHJ-1对钻井液润滑系数的影响

    Figure  4.   Effect of the lubricant RHJ-1 on the lubrication coefficient of drilling fluids

    图  5   润滑剂RHJ-1对钻井液塑性黏度的影响

    Figure  5.   Effect of the lubricant RHJ-1 on the PV of drilling fluids

    图  6   润滑剂RHJ-1对钻井液API滤失量的影响

    Figure  6.   Effect of the lubricant RHJ-1 on the API filtration of drilling fluids

    图  7   WY23-4HF井三开完钻起钻摩阻与邻井对比情况

    Figure  7.   Comparison of tripping out friction with that of offset wells after drilling of 3rd-spud section in Well WY 23-4HF

    表  1   极压润滑系数和摩擦面粗糙度

    Table  1   Extreme pressure lubrication coefficient and friction surface roughness

    钻井液配方极压润滑系数摩擦面粗糙度/μm
    5.0% 膨润土浆0.37238.42
    5.0% 膨润土浆+0.5%RHJ-10.24836.02
    5.0% 膨润土浆+1.0%RHJ-10.07434.68
    5.0% 膨润土浆+1.5%RHJ-10.04933.16
    5.0% 膨润土浆+2.0%RHJ-10.04031.95
    5.0% 膨润土浆+2.5%RHJ-10.04232.08
    下载: 导出CSV

    表  2   钻屑对钻井液润滑性的影响

    Table  2   Effect of cuttings on the lubricity of drilling fluids

    钻屑加量,
    %
    基浆润滑
    系数
    基浆+3.0% RHJ-1 基浆+4.0% RHJ-1
    润滑系数降低率,% 润滑系数降低率,%
    00.2540.12650.39
    5.00.2780.14747.12
    10.00.3410.17249.560.16252.49
    15.00.3940.19750.000.17555.58
    下载: 导出CSV
  • [1] 邓兴强. 深层水平井钻井液技术难点及设计方案研究[J]. 西部探矿工程, 2019, 31(6): 85–86. doi: 10.3969/j.issn.1004-5716.2019.06.031

    DENG Xingqiang. Study on technical difficulties and design scheme of drilling fluid for deep horizontal well[J]. West-China Exploration Engineering, 2019, 31(6): 85–86. doi: 10.3969/j.issn.1004-5716.2019.06.031

    [2] 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术, 2018, 46(1): 35–39.

    LIU Yonggui. Optimization and application of high performance water-based drilling fluid for horizontal wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(1): 35–39.

    [3] 许艳东. 定向钻井中托压机理分析及应对策略探讨[J]. 中国新技术新产品, 2017(19): 51–52. doi: 10.3969/j.issn.1673-9957.2017.19.028

    XU Yandong. Mechanism analysis and countermeasure discussion of underpinning in directional drilling[J]. New Technology & New Products of China, 2017(19): 51–52. doi: 10.3969/j.issn.1673-9957.2017.19.028

    [4] 王琳,董晓强,杨小华,等. 高密度钻井液用润滑剂SMJH-1的研制及性能评价[J]. 钻井液与完井液, 2016, 33(1): 28–32.

    WANG Lin, DONG Xiaoqiang, YANG Xiaohua, et al. Development and evaluation of a high density fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 28–32.

    [5]

    LI Xin, GAO Deli, LU Baoping, et al. Study on modified maximum extension length prediction model for horizontal wells considering differential sticking[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106371. doi: 10.1016/j.petrol.2019.106371

    [6] 吴江,李炎军,张万栋,等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术, 2020, 48(2): 63–69. doi: 10.11911/syztjs.2019112

    WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63–69. doi: 10.11911/syztjs.2019112

    [7] 魏昱,王骁男,安玉秀,等. 钻井液润滑剂研究进展[J]. 油田化学, 2017, 34(4): 727–733.

    WEI Yu, WANG Xiaonan, AN Yuxiu, et al. Research development of drilling fluid lubricant[J]. Oilfield Chemistry, 2017, 34(4): 727–733.

    [8] 屈沅治,黄宏军,汪波,等. 新型水基钻井液用极压抗磨润滑剂的研制[J]. 钻井液与完井液, 2018, 35(1): 34–37. doi: 10.3969/j.issn.1001-5620.2009.04.004

    QU Yuanzhi, HUANG Hongjun, WANG Bo, et al. Development of extreme pressure anti-wear lubricant MPA for water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 34–37. doi: 10.3969/j.issn.1001-5620.2009.04.004

    [9] 艾贵成,王卫国,张宝峰,等. 深井高温高密度钻井液润滑性控制技术[J]. 西部探矿工程, 2009, 21(6): 42–44. doi: 10.3969/j.issn.1004-5716.2009.06.015

    AI Guicheng, WANG Weiguo, ZHANG Baofeng, et al. Lubrication control technology of high temperature and high density drilling fluid for deep well[J]. West-China Exploration Engineering, 2009, 21(6): 42–44. doi: 10.3969/j.issn.1004-5716.2009.06.015

    [10] 刘建军,刘晓栋,王彪. 钻井液用低荧光高效极压润滑剂BDLU-100L的性能研究[J]. 油田化学, 2016, 33(2): 200–203.

    LIU Jianjun, LIU Xiaodong, WANG Biao. Performance of low fluorescence and high efficiency extreme-pressure lubricant BDLU-100L for drilling fluid[J]. Oilfield Chemistry, 2016, 33(2): 200–203.

    [11] 王亮.青海哇玉地区岩心钻探润滑减阻钻井液研究[J].探矿工程(岩石钻掘工程), 2013, 40(增刊1): 203-206, 209.

    WANG Liang. Study on lubrication and drag reduction drilling fluids for core drilling in Wayu Area of Qinghai[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013, 40(supplement 1): 203-206, 209.

    [12] 黄维安,邱正松,钟汉毅,等. 高密度钻井液加重剂的研究[J]. 国外油田工程, 2010, 26(8): 37–40.

    HUANG Weian, QIU Zhengsong, ZHONG Hanyi, et al. Study on heavier agent for high density drilling fluid[J]. Foreign Oilfield Engineering, 2010, 26(8): 37–40.

    [13] 汪露,王伟志,杨中强. 塔河油田钻井液固相控制技术[J]. 钻采工艺, 2015, 38(6): 102–104. doi: 10.3969/J.ISSN.1006-768X.2015.06.32

    WANG Lu, WANG Weizhi, YANG Zhongqiang. Solid phase control technology of drilling fluid in Tahe Oilfield[J]. Drilling & Production Technology, 2015, 38(6): 102–104. doi: 10.3969/J.ISSN.1006-768X.2015.06.32

    [14] 潘谊党,于培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液, 2019, 36(1): 1–9.

    PAN Yidang, YU Peizhi, MA Jingyuan. Progresses in research on settling of weighting materials in high density drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 1–9.

    [15] 马勇,崔茂荣,杨冬梅,等. 加重剂对水基钻井液润滑性能的影响研究[J]. 天然气工业, 2005, 25(10): 58–60. doi: 10.3321/j.issn:1000-0976.2005.10.020

    MA Yong, CUI Maorong, YANG Dongmei, et al. Study on influence of heavyweight additives on lubricity of water-based drilling fluids[J]. Natural Gas Industry, 2005, 25(10): 58–60. doi: 10.3321/j.issn:1000-0976.2005.10.020

图(9)  /  表(2)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  240
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 修回日期:  2020-06-21
  • 网络出版日期:  2020-08-17
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回