致密/页岩油气储层损害机理与保护技术研究进展及发展建议

孙金声, 许成元, 康毅力, 张洁

孙金声, 许成元, 康毅力, 张洁. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
引用本文: 孙金声, 许成元, 康毅力, 张洁. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
Citation: SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068

致密/页岩油气储层损害机理与保护技术研究进展及发展建议

基金项目: 国家自然科学基金-石油化工联合基金(A类)重点基金项目“超深井安全高效井筒工作液构建及调控方法基础研究”(编号:U1762212),国家自然科学基金项目“基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制”(编号:51604236)和四川省科技计划项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(编号:2018JY0436)联合资助
详细信息
    作者简介:

    孙金声(1965—),男,江西于都人,1985年毕业于江西师范大学化学专业,1988年获南开大学有机化学专业硕士学位,2006年获西南石油大学应用化学博士学位,中国工程院院士,教授,博士生导师,主要从事钻井液、储层保护理论与技术等研究工作。系本刊编委。E-mail:sunjinsheng1965@sina.com

  • 中图分类号: TE 258

Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs

  • 摘要:

    致密/页岩油气藏赋存地质条件独特,通常采用水平井加分段压裂技术进行开发,但油气井初期产量差异大且递减快,而钻井完井及增产改造中的储层损害是重要原因。如何降低致密/页岩油气藏勘探开发各环节的储层损害,提高单井产量与稳产周期,实现经济高效开发,是目前亟待解决的重大科学问题。为此,在分析致密/页岩油气储层损害特点的基础上,总结了钻井完井、增产改造与开发生产过程中致密/页岩油气储层损害的主要机理,介绍了物理颗粒暂堵、化学成膜暂堵、欠平衡钻井完井和界面修饰等储层保护技术的基本原理及研究进展,以典型案例阐述了储层保护技术对及时发现、准确评价和高效开发致密/页岩油气资源的重要作用,并指出储层损害预测与诊断系统、储层多尺度损害评价方法、智能型储层保护材料、液相圈闭损害防治措施和储层保护–漏失控制–增渗改造一体化技术是致密/页岩油气储层保护的重要发展方向。

    Abstract:

    Tight and shale oil and gas reservoirs demonstrate unique geological characteristics such as extremely poor storage-flow quality, and multi-scale structure of storage and flow space. Those reservoirs are normally developed with staged fracturing of horizontal wells, which is made quite challenging by obviously different initial production rates and rapid declines. Further, uncertainty over the technical effects of drilling/completion and stimulation are significantly different. Currently, the major scientific issues that urgently need to be resolved include the requirement to reduce reservoir damage at all the exploration and development stages, to increase well production and stable production cycle, and to achieve economic and efficient development. Through the damage characteristics analysis of such reservoirs, and the main damage mechanisms summary during drilling/completion, stimulation and production, this paper introduces the basic principles and research progress of reservoir protection technologies such as the temporary plugging of physical particles and chemical filming, underbalanced drilling and completion, and interface modification, etc. The importance of damage prevention technologies in the timely discovery of tight/shale oil and gas reservoirs, correct evaluation and efficient development is elaborated with case studies. This paper also points out that integrated techniques in reservoir damage prediction and diagnosis system, multi-scale damage evaluation method, intelligent reservoir protection materials, liquid trap damage prevention measures, and reservoir protection-leakage control-permeability enhancement will be the important development trends in tight/shale oil and gas reservoir protection in the future.

  • 随着天然气需求量日益增大、进口气量持续快速增长以及国内大型长输管道工程的快速建设,天然气储存和调峰矛盾日益突出[1-2]。储气库是各大气区天然气管道建设的重要一环,具有储存天然气和调峰的功能[3-4]。与常规气藏单向衰竭式开采相比,储气库具有强注强采、短期大流量交替注气和采气等特点[5]。储气库周期注采过程中,储层孔隙压力周期性升高和降低,会引起储层有效应力交替变化,导致储层裂缝周期性开启和闭合,进而引发储气库储层的应力敏感性,而且随着储气库注采周期增长,应力敏感会增强[6]。因此,研究储气库储层的应力敏感性,有助于提高储气库的注采效率,优化注采制度。

    油气生产过程中,有效应力增大会使储层物性发生变化[7],尤其是储层渗透率和孔隙度等参数[8]。科研人员开展了有效应力加载条件下的岩石渗透率和孔隙度变化试验[9-13],并通过建立函数、空间模型等来描述孔隙度、渗透率与有效应力的关系[1014-16]。同时建立了评价应力敏感程度的方法,主要包括用回归渗透率与有效应力指数关系中的常数表示应力敏感程度[17]、应力敏系数法[18],以及行业标准《储层敏感性流动试验评价方法》(SY/T 5358—2010)等一系列评价方法。

    笔者选取XG储气库碳酸盐岩储层岩样,开展了应力敏感试验和考虑有效应力作用时间的应力敏感试验,并测试了试验过程中岩样的渗透率,运用扫描电镜等手段观测了考虑有效应力作用时间试验前后的岩样裂缝壁面,分析了有效应力大小及其作用时间对岩石裂缝和孔隙结构的作用机理。基于以上分析,明确了储气库周期注采过程中有效应力和有效应力作用时间对碳酸盐岩渗透率的影响,以期为优化储气库的注采制度提供理论依据。

    试验岩样选自川渝地区XG储气库黄龙组碳酸盐岩储层,埋深2 300.00~2 600.00 m,地层温度62.23 ℃,储气库库容40.5×108 m3,垫底气量17.7×108 m3,工作气量22.8×108 m3。试验岩样孔隙度的最大值为11.99%,最小值为0.11%,平均为2.07%。岩样渗透率的最大值为2.27 mD,最小值为4.36×10–4 mD,平均为0.67 mD。储层岩样裂缝统计结果表明,有效裂缝为649条,裂缝平均密度为8.96条/m,占总裂缝的74.86%,表明储气库碳酸盐岩储层有效裂缝较发育。

    研究区块为孔隙性–裂缝性碳酸盐岩储层,裂缝不仅是储集空间,也是重要的渗流通道,因此采用巴西劈裂法对4块岩样进行了人工造缝,然后进行相关试验,并选择4块基块岩样进行了对比试验。试验岩样的基本物性参数见表1

    表  1  试验岩样的基本物性参数
    Table  1.  Basic physical parameters of experimental rock samples
    岩样号长度/mm直径/mm孔隙度,%渗透率/mD裂缝宽度/μm备注
    XG-144.4024.603.02 11.531913.88裂缝
    XG-245.1024.722.86 3.6667 9.49裂缝
    XG-343.2025.022.21 0.0013基块
    XG-443.2424.603.42 0.0015基块
    XG-544.5224.883.31 31.426519.46裂缝
    XG-644.7724.583.72147.264732.43裂缝
    XG-745.2624.502.53 0.0012基块
    XG-845.0425.042.45 0.0013基块
    下载: 导出CSV 
    | 显示表格

    应力敏感试验装置主要包括驱替泵、氮气瓶、围压系统、岩心夹持器、质量流量计、回压阀和数据采集系统等,如图1所示。回压阀在岩样出口端施加回压,具有2个作用:1)在测试裂缝岩样的渗透率时消除滑脱效应[19-21];2)可以提高压力的传递效率,增加孔喉的动用程度,提高基块岩样渗透率的测试效率[22]

    图  1  应力敏感试验装置
    1.驱替泵;2.阀门;3.压力传感器;4.岩心夹持器;5.围压系统;6.质量流量计;7.回压阀;8.氮气瓶;9.数据采集系统
    Figure  1.  Stress sensitivity testing device

    储气库注采过程中的储层有效应力会发生改变,为此开展了应力敏感试验,研究了储气库储层有效应力大小和作用时间对其渗透率的影响。基于研究区储气库储层压力的变化情况,设计了以下具体的试验步骤:1)将预先处理好的岩样放入岩心夹持器,在高围压下对岩样老化处理4 h,使岩样中的孔隙闭合;2)测试有效应力分别为2,10,30,35,45,50和60 MPa时的岩样渗透率,有效应力为上覆岩层压力(围压)与孔隙压力之差;3)在步骤 2)基础上进行考虑有效应力作用时间的应力敏感试验,每个应力加载2 h,每间隔30 min测试一次岩样的渗透率;4)采用应力敏感系数法[18]进行应力敏感程度评价,并运用SEM等手段观察分析了考虑有效应力作用时间的应力敏感试验前后的裂缝壁面。

    应力敏感程度评价标准:应力敏感系数Ss≤0.05,为无应力敏感;0.05<Ss≤0.30,应力敏感程度为弱;0.30<Ss≤0.50,应力敏感程度为中等偏弱;0.50<Ss≤0.70,应力敏感程度为中等偏强;0.70<Ss≤1.00,应力敏感程度为强;Ss>1.00,应力敏感程度为极强。

    岩样应力敏感程度评价结果见表2。由表2可知:裂缝岩样XG-1和XG-2的应力敏感系数为0.34和0.21,应力敏感程度为中等偏弱和弱;基块岩样XG-3和XG-4的应力敏感系数为0.03和0.04,应力敏感程度为无。

    表  2  应力敏感程度评价结果
    Table  2.  Evaluation results of stress sensitivity
    岩样应力敏感系数应力敏感程度备注
    XG-10.34中等偏弱裂缝
    XG-20.21裂缝
    XG-30.03基块
    XG-40.04基块
    下载: 导出CSV 
    | 显示表格

    考虑有效应力作用时间的岩样应力敏感程度评价结果见表3。由表3可知,裂缝岩样的应力敏感程度为中等偏强—强,基块岩样的应力敏感程度为弱。研究区块储层上覆岩层压力(围压)为30 MPa,储气库的最大注气压力为10 MPa;储气库由枯竭型气藏改建而成,储层孔隙压力最小约1.0 MPa,因此有效应力选20和30 MPa。有效应力恒定,随着有效应力作用时间增长,试验岩样的渗透率降低,其中基块岩样2 h内降低2%~3%,裂缝岩样2 h内降低5%~9%(见图2)。与常规试验结果相比,考虑有效应力作用时间时,裂缝和基块岩样的应力敏感程度均增强。

    表  3  考虑有效应力作用时间的应力敏感评价结果
    Table  3.  Stress sensitivity evaluation results considering the duration of effective stress action
    岩样号应力敏感系数应力敏感程度备注
    XG-50.75裂缝
    XG-60.68中等偏强裂缝
    XG-70.18基块
    XG-80.19基块
    下载: 导出CSV 
    | 显示表格
    图  2  有效应力作用时间与岩样渗透率的关系
    Figure  2.  Relationship between effective stress action duration and rock sample permeability

    有效应力的变化会引发岩石变形,而岩石的变形主要为骨架颗粒的变形和排列方式的改变。骨架颗粒的变形属于弹性变形,有效应力卸载后通常可以恢复;而骨架颗粒排列方式改变引发的变形通常属于塑性变形,有效应力卸载后难以恢复,属于不可逆变形。对比应力敏感程度评价试验结果(见表2表3)发现,随着有效应力作用时间增长,裂缝岩样和基块岩样的应力敏感程度均增强。有效应力作用时间增长,岩样骨架颗粒受挤压发生弹性变形,骨架颗粒的排列方式产生相对位移,进而发生塑性变形。碳酸盐岩储层基块胶结致密,骨架颗粒变形的空间很小,因此导致其强度降低的主要原因是,裂缝壁面产生相对位移,导致骨架颗粒排列方式发生改变,从而引起塑性变形。扫描电镜结果表明,试验前岩样裂缝壁面存在致密结构和大量微凸体(见图3(a)),试验后裂缝壁面出现微裂缝和脱落的微粒(图3(b))。随着有效应力增大,裂缝壁面的微凸体发生错动,导致颗粒之间产生相对位移,发生塑性变形,导致岩石强度降低。

    图  3  考虑有效应力作用时间应力敏感试验前后的裂缝壁面扫描电镜图片
    Figure  3.  Scanning electron micrograph of fracture walls before and after stress sensitivity experiment taking into account of the effective stress action duration

    图2可以看出,渗透率变化率随着有效应力作用时间的增长可划分为渗透率快速降低、渗透率稳定和渗透率再降低等3个阶段。开始阶段,大量的孔隙和裂缝在有效应力作用下逐渐闭合,导致岩样渗透率快速降低。有效应力作用一段时间后,由于大多数的孔隙和裂缝都已发生闭合,岩样渗透率较为稳定。由于裂缝壁面存在微凸体,尤其是以点状接触的微凸体易发生应力集中,随着有效应力作用时间继续增长,微凸体破碎,并镶嵌在裂缝壁面,诱发微裂缝的萌生,加速天然裂缝的扩展,促使岩石强度降低,强化应力敏感性,最终导致岩样渗透率再次降低[23-24]

    岩石骨架颗粒对岩石强度具有重要作用[25]。当岩石受到有效应力作用时,岩石骨架颗粒承受了绝大部分的应力,因此岩石骨架颗粒会影响岩石的应力敏感性。利用XRD分析试验岩样的矿物组分,结果显示:岩样全岩矿物组分以碳酸盐矿物为主,平均含量为97.2%,其中白云石含量为75.3%,方解石含量为21.9%;石英含量为0.8%,黏土矿物含量为2.0%。黏土矿物主要为绿泥石、伊利石和少量的伊/蒙间层矿物。储层中碳酸盐矿物含量较高,进行酸化改造时会溶蚀碳酸盐矿物等,造成岩石强度降低,使储层的应力敏感性增强。储层基块酸化后,其渗透率和裂缝导流能力在有效应力增大时会降低[26],从而使注采效率降低。石英强度较高,溶蚀碳酸盐矿物时会暴露出来,可对裂缝形成支撑,但由于其含量较少,对于弱化应力敏感程度的作用很小。

    1)未考虑有效应力作用时间时,裂缝岩样的应力敏感程度为弱—中等偏弱,基块岩样为无;考虑有效应力作用时间时,裂缝岩样的应力敏感程度为中等偏强—强,基块岩样为弱。

    2)随着有效应力作用时间增长,裂缝岩样和基块岩样的渗透率呈现“快速降低—稳定—降低”的趋势。

    3)有效应力作用时间增长使裂缝壁面微凸体破碎,诱发微裂缝的萌生与扩展,导致岩石强度降低,进而强化岩样的应力敏感程度,最终影响储气库的注采效率。

    4)建议对碳酸盐岩储层裂缝进行小规模不均匀酸蚀,以达到支撑裂缝的目的,使裂缝保持一定的导流能力。

  • 图  1   油气井产量与油气储层钻开液漏失量的统计结果

    Figure  1.   Statistical results of drill-in fluid loss volume and well production

    图  2   美国Barnett页岩水相圈闭损害评价结果[30]

    Figure  2.   Evaluation results of water traps in Barnett shale in the United States[30]

    图  3   美国Berea致密砂岩水相圈闭损害评价结果[31]

    Figure  3.   Evaluation results of water traps in Berea tight sandstone in the United States[31]

    图  4   压裂返排液驱替后岩样裂缝面残留固相与结晶盐[39]

    Figure  4.   Residual solid phase and crystalline salt on the fracture surface of rock sample after post-fracturing cleanup[39]

    图  5   国内外页岩储层岩样应力敏感性统计结果[42]

    Figure  5.   Statistics on the stress sensitivity of shale reservoir samples at home and abroad[42]

    图  6   压裂液浸泡时间对页岩强度的影响[42]

    Figure  6.   Impact of fracturing fluid immersion time on shale strength[42]

    图  7   不同初始含水饱和度下致密砂岩盐析前后孔隙度/渗透率降幅[46]

    Figure  7.   Porosity/permeability decreases before and after salting out of tight sandstone at different initial water saturations[46]

    图  8   大牛地气田储层保护前后气层测井解释结果对比

    Figure  8.   Comparison of logging interpretation results in Dani-udi Gas Field before and after reservoir protection

    图  9   加拿大Bakken盆地致密油气藏欠平衡钻井储层保护试验井与非试验井对比[68]

    Figure  9.   Comparison of underbalanced drilling reservoir protection test wells and non-test wells in tight oil and gas reservoirs of Bakken Basin, Canada[68]

    图  10   储层保护压裂液体系提高气井产量和稳产期[28]

    Figure  10.   Production increase and stabilize production periodof reservoir protection fracturing fluid system[28]

    表  1   大牛地致密砂岩气藏储层保护效果[34]

    Table  1   Protection effect in Daniudi tight sandstone gas reservoir[34]

    井号测试层位测试产量/(104m3·d–1备注
    D7石盒子组3段3.17非试验井
    D104.04非试验井
    D1521.08试验井
    DK238.87试验井
    D8山西组2段1.54非试验井
    D90.24非试验井
    D122.31试验井
    D137.03试验井
     注:气井均采用水平井加砂压裂+液氮伴注的投产方式。
    下载: 导出CSV

    表  2   塔里木盆地克深区块超深致密砂岩气藏储层保护效果[55]

    Table  2   Protection effect of ultra-deep tight sandstone gas reservoirs in Keshen Block, Tarim Basin[55]

    井号测试井段/m钻井液漏
    失量/m3
    测试产气量/
    (104m3·d–1)
    备注
    KS9077 509.00~7 635.003.4094.87试验井
    KS9057 540.00~7 720.0013.9096.64试验井
    KS9017 910.00~7 930.00242.40 0.74非试验井
    KS9027 810.00~7 812.0055.0045.66非试验井
    KS9037 559.00~7 641.20222.41 63.44非试验井
    KS9047 710.00~7 780.00309.80 11.96非试验井
    下载: 导出CSV

    表  3   化学成膜与物理暂堵技术协同保护储层效果[65]

    Table  3   The reservoir protection effects of chemical filming and physical temporary plugging technologies[65]

    井号油气层
    厚度/m
    油气井米采油指数/
    (m3·m−1·MPa−1)
    增产
    倍数
    备注
    中30-斜更53310.50.09522.11试验井
    中31-更533 7.30.4520非试验井
    中32-斜53315.00.58001.28试验井
    中31-斜533 7.30.4520非试验井
    中30-斜更52819.10.73308.63试验井
    中31-斜52915.30.0850非试验井
    下载: 导出CSV

    表  4   四川盆地邛西构造须2段致密砂岩气藏储层保护效果

    Table  4   Protection effect of Xu 2 tight sandstone gas reservoir in Qiongxi structure, Sichuan Basin

    井号井深/m完井方式测试产量/(104m3·d–1)钻井方法
    邛西14 450射孔完井 0.07常规过平衡
    邛西23 900加砂压裂 0.52
    邛西33 572先期裸眼45.67全过程欠平衡
    邛西43 852衬管完井89.34
    下载: 导出CSV
  • [1] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1–12. doi: 10.1038/s41401-019-0299-4

    ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1–12. doi: 10.1038/s41401-019-0299-4

    [2] 邹才能,潘松圻,赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416–426.

    ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challen-ges and significance of China’s“energy independence”strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416–426.

    [3] 罗平亚,康毅力,孟英峰. 我国储层保护技术实现跨越式发展[J]. 天然气工业, 2006, 26(1): 84–87.

    LUO Pingya, KANG Yili, MENG Yingfeng. China’s reservoir protection technologies develop in leaps[J]. Natural Gas Industry, 2006, 26(1): 84–87.

    [4]

    ZHANG Dujie, KANG Yili, YOU Lijun, et al. Investigation of formation damage induced during drill-in process of ultra-deep fractured tight sandstone gas reservoirs[J]. Journal of Energy Resources Technology, 2018, 141(7): 1–11.

    [5] 康毅力,罗平亚. 中国致密砂岩气藏勘探开发关键工程技术现状与展望[J]. 石油勘探与开发, 2007, 34(2): 239–245.

    KANG Yili, LUO Pingya. Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J]. Petroleum Exploration and Development, 2007, 34(2): 239–245.

    [6]

    BENNION D B. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations[J]. Journal of Canadian Petroleum Technology, 2002, 44(11): 29–36.

    [7]

    XU Chengyuan, KANG Yili, YOU Zhenjiang, et al. Review on formation damage mechanisms and processes in shale gas reservoir: known and to be known[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1208–1219. doi: 10.1016/j.jngse.2016.03.096

    [8] 徐同台, 熊友明, 康毅力.保护油气层技术[M].3版.北京: 石油工业出版社, 2010.

    XU Tongtai, XIONG Youming, KANG Yili. Technology for protecting oil and gas layers[M]. 3rd ed. Beijing: Petroleum Industry Press, 2010.

    [9]

    CIVAN F. Reservoir formation damage[M]. 2nd ed. London: Gulf Professional Publishing, 2015.

    [10] 康毅力,罗平亚. 储层保护系统工程:实践与认识[J]. 钻井液与完井液, 2007, 24(1): 1–7.

    KANG Yili, LUO Pingya. System engineering of reservoir preservation: practice and theory[J]. Drilling Fluid & Completion Fluid, 2007, 24(1): 1–7.

    [11]

    KANG Yili, XU Chengyuan, YOU Lijun, et al. Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 18: 353–359. doi: 10.1016/j.jngse.2014.03.016

    [12]

    WANG Hanyi. What factors control shale-gas production and production-decline trend in fractured systems: a comprehensive analysis and investigation[J]. SPE Journal, 2017, 22(2): 562–581. doi: 10.2118/179967-PA

    [13]

    CUI Q, ABASS H H. Experimental study of permeability decline in tight formations during long-term depletion[R]. SPE 180257, 2016.

    [14]

    LIANG Tianbo, GU Fuyang, YAO Erdong, et al. Formation damage due to drilling and fracturing fluids and its solution for tight naturally fractured sandstone reservoirs[J/OL]. Geofluids, 2017[2020-03-20]. https://doi.org/10.1155/2017/9350967.

    [15] 黄维安,邱正松,岳星辰,等. 页岩气储层损害机制及保护水基钻完井液技术[J]. 中国石油大学学报(自然科学版), 2014, 38(3): 99–105.

    HUANG Weian, QIU Zhengsong, YUE Xingchen, et al. Damage mechanism and water-based drilling fluid protection technology for shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(3): 99–105.

    [16]

    RAHMAN M K, SUAREZ Y A, CHEN Z, et al. Unsuccessful hydraulic fracturing cases in Australia: investigation into causes of failures and their remedies[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 70–81. doi: 10.1016/j.petrol.2005.07.009

    [17] 康毅力,杨斌,游利军,等. 油基钻井完井液对页岩储层保护能力评价[J]. 天然气工业, 2013, 33(12): 99–104.

    KANG Yili, YANG Bin, YOU Lijun, et al. Damage evaluation of oil-based drill-in fluids to shale reservoirs[J]. Natural Gas Industry, 2013, 33(12): 99–104.

    [18]

    XU Chengyuan, KANG Yili, YOU Lijun, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir: mathematical model and experimental study[J]. SPE Journal, 2017, 22(5): 1654–1670. doi: 10.2118/182266-PA

    [19] 许成元,闫霄鹏,康毅力,等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399–408.

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399–408.

    [20]

    XU Chengyuan, YOU Zhenjiang, KANG Yili, et al. Stochastic modelling of particulate suspension transport for formation damage prediction in fractured tight reservoir[J]. Fuel, 2018, 221: 476–490. doi: 10.1016/j.fuel.2018.02.056

    [21] 许成元,康毅力,游利军,等. 裂缝性储层渗透率返排恢复率的影响因素[J]. 石油钻探技术, 2012, 40(6): 17–21.

    XU Chengyuan, KANG Yili, YOU Lijun, et al. Influential factors on permeability recovery during flowback of fractured reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(6): 17–21.

    [22]

    ZHANG Dujie, KANG Yili, SELVADURAI A P S, et al. The role of phase trapping on permeability reduction in an ultra-deep tight sandstone gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 178: 311–323. doi: 10.1016/j.petrol.2019.03.045

    [23]

    ZHANG Hao, ZHONG Ying, KURU E, et al. Impacts of permeability stress sensitivity and aqueous phase trapping on the tight sandstone gas well productivity: a case study of the Daniudi Gas Field[J]. Journal of Petroleum Science and Engineering, 2019, 177: 261–269. doi: 10.1016/j.petrol.2019.02.044

    [24] 张涛,李相方,王永辉,等. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828–838.

    ZHANG Tao, LI Xiangfang, WANG Yonghui, et al. Study on the effect of gas-shale reservoir special properties on the fracturing fluidrecovery efficiency and production performance[J]. Natural Gas Geoscience, 2017, 28(6): 828–838.

    [25] 刘乃震,柳明,张士诚. 页岩气井压后返排规律[J]. 天然气工业, 2015, 35(3): 50–54.

    LIU Naizhen, LIU Ming, ZHANG Shicheng. Flowback patterns of fractured shale gas wells[J]. Natural Gas Industry, 2015, 35(3): 50–54.

    [26]

    GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R]. SPE 167165, 2013.

    [27]

    MIRZAEI-PAIAMAN A, MASIHI M, MOGHADASI J. Formation damage through aqueous phase trapping: a review of the evaluating methods[J]. Petroleum Science and Technology, 2011, 29(11): 1187–1196. doi: 10.1080/10916460903551073

    [28]

    PHAN T, KAZEMPOUR M, NGUYEN D, et al. Treating liquid banking problem to increase shale gas wells productivity[R]. SPE 189523, 2018.

    [29]

    PENG Yan, QU Hongyan, LIU Jishan, et al. Impact of fluid adsorption on geomechanical properties of shale gas reservoir and shale gas recovery rate[R]. ARMA-2018-342, 2018.

    [30]

    ZHANG Junjing, OUYANG Liangchen, ZHU Ding, et al. Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in the shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2015, 130: 37–45. doi: 10.1016/j.petrol.2015.04.004

    [31]

    ZHANG Junjing, ZHU Ding, HILL A D. Water-induced damage to propped-fracture conductivity in shale formations[J]. SPE Production & Operations, 2016, 31(2): 334–343.

    [32]

    SABOORIAN-JOOYBARI H, POURAFSHARY P. Potential severity of phase trapping in petroleum reservoirs: an analytical approach to prediction[J]. SPE Journal, 2017, 22(3): 863–874. doi: 10.2118/183631-PA

    [33]

    BAHRAMI H, REZAEE R, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 100–106. doi: 10.1016/j.petrol.2012.04.002

    [34]

    YOU Lijun, KANG Yili. Integrated evaluation of water phase trapping damage potential in tight gas reservoirs[R]. SPE 122034, 2009.

    [35]

    PAGELS M, WILLBERG D M, EDELMAN E, et al. Quantifying fracturing fluid damage on reservoir rock to optimize production[R]. SPE 1578948, 2013.

    [36]

    DING D Y, LANGOUËT H, JEANNIN L. Simulation of fracturing-induced formation damage and gas production from fractured wells in tight gas reservoirs[R]. SPE Production & Operations, 2013, 28(3): 13-22.

    [37]

    ZOLFAGHARI A, DEHGHANPOUR H, NOEL M, et al. Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 113–127. doi: 10.1016/j.juogr.2016.03.004

    [38]

    NICOT J P, SCANLON B R, REEDY R C, et al. Source and fate of hydraulic fracturing water in the Barnett shale: a historical perspective[J]. Environmental Science & Technology, 2014, 48(4): 2464–2471.

    [39] 游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12): 61–69.

    YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61–69.

    [40]

    YANG Bin, ZHANG Hao, KANG Yili. In situ sequestration of a hydraulic fracturing fluid in Longmaxi shale gas formation in the Sichuan Basin[R]. Energy & Fuels, 2019, 33(8): 6983–6994.

    [41]

    XU Chengyuan, LIN Chong, KANG Yili, et al. An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: characteristics, mechanisms and controlling factors[J]. Rock Mechanics and Rock Engineering, 2018, 51: 2321–2338. doi: 10.1007/s00603-018-1481-6

    [42]

    BAI Jiajia, KANG Yili, CHEN Zhangxin, et al. Changes in retained fracturing fluid properties and their effect on shale mechanical properties[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 1–12.

    [43] 唐建新, 腾俊洋, 张闯, 等. 层状含水页岩蠕变特性试验研究[J].岩土力学, 2018, 39(增刊1):33–41.

    TANG Jianxin, TENG Junyang, ZHANG Chuang, et al. Experimental study on creep characteristics of layered water bearing shale[J]. Rock and Soil Mechanics, 2018, 39(supplement 1): 33–41.

    [44]

    CHEN Tianyu, FENG Xiating, CUI Guanglei, et al. Experimental study of permeability change of organic-rich gas shales under high effective stress[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 1–14. doi: 10.1016/j.jngse.2019.01.014

    [45]

    SLIM M, HOFMANN R, SAXENA N, et al. Impact of mineralogy on creep properties and production decline rates[R].ARMA-2019-2065, 2019.

    [46]

    ZHANG Dujie, KANG Yili, YOU Lijun, et al. Investigation of multi-scale approach for damage control in ultra-deep tight sandstone gas reservoirs based on the multi-scale formation damage mechanisms[R]. IPTC 19254, 2019.

    [47] 罗向东,罗平亚. 屏蔽式暂堵技术在储层保护中的应用研究[J]. 钻井液与完井液, 1992, 9(2): 19–27.

    LUO Xiangdong, LUO Pingya. Protecting oil reservoir with temporary shielding method[J]. Drilling Fluid & Completion Fluid, 1992, 9(2): 19–27.

    [48] 蒋官澄,鄢捷年,王富华,等. 新型屏蔽暂堵技术在大宛齐地区的应用[J]. 石油钻探技术, 1999, 27(6): 21–23.

    JIANG Guancheng, YAN Jienian, WANG Fuhua, et al. Applications of temporary plugging techniques in Dawanqi Area[J]. Petroleum Drilling Techniques, 1999, 27(6): 21–23.

    [49] 蒋官澄,胡成亮,熊英,等. 广谱“油膜”暂堵钻井液体系研究[J]. 中国石油大学学报(自然科学版), 2006, 30(4): 53–57.

    JIANG Guancheng, HU Chengliang, XIONG Ying, et al. Study on system of broad-spectrum oil-film temporary plugging drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(4): 53–57.

    [50] 李志勇,鄢捷年,王友兵,等. 保护储层钻井液优化设计新方法及其应用[J]. 钻采工艺, 2006, 29(2): 85–87.

    LI Zhiyong, YAN Jienian, WANG Youbing, et al. New optimized design method and application of drilling fluid used for formation damage control[J]. Drilling & Production Technology, 2006, 29(2): 85–87.

    [51] 鄢捷年,赵胜英,王兆霖,等. 理想充填油气层保护技术在青海油田深探井中的应用[J]. 石油钻探技术, 2007, 35(4): 53–55.

    YAN Jienian, ZHAO Shengying, WANG Zhaolin, et al. Application of formation damage control technology based on ideal packingtheory to deep exploration wells in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2007, 35(4): 53–55.

    [52] 吕开河,邱正松,王在明. 自适应屏蔽暂堵钻井液技术[J]. 中国石油大学学报(自然科学版), 2008, 32(2): 68–71.

    LV Kaihe, QIU Zhengsong, WANG Zaiming. Techniques of auto-adapting shielding and temporary plugging drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2): 68–71.

    [53]

    KANG Yili, XU Chengyuan, YOU Lijun, et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J]. Journal of Natural GasScience and Engineering, 2014, 20: 67–73. doi: 10.1016/j.jngse.2014.06.016

    [54] 闫丰明,康毅力,孙凯,等. 裂缝–孔洞型碳酸盐岩储层暂堵性堵漏机理研究[J]. 石油钻探技术, 2011, 39(2): 81–85.

    YAN Fengming, KANG Yili, SUN Kai, et al. Mechanism oftemporary sealing for fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2011, 39(2): 81–85.

    [55]

    SELVADURAI A P S, ZHANG Dujie, KANG Yili. Permeability evolution in natural fractures and their potential influence on loss of productivity in ultra-deep gas reservoirs of the Tarim Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 162–177. doi: 10.1016/j.jngse.2018.07.026

    [56] 朱金智,游利军,李家学,等. 油基钻井液对超深裂缝性致密砂岩气藏的保护能力评价[J]. 天然气工业, 2017, 37(2): 62–68.

    ZHU Jinzhi, YOU Lijun, LI Jiaxue, et al. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs[J]. Natural Gas Industry, 2017, 37(2): 62–68.

    [57] 蒋官澄,马先平,纪朝凤,等. 广谱“油膜”暂堵剂在油层保护技术中的应用[J]. 应用化学, 2007, 24(6): 665–669.

    JIANG Guancheng, MA Xianping, JI Chaofeng, et al. Application of a broad-spectrum oil-film temporary plugging agent to reservoir protection[J]. Chinese Journal of Applied Chemistry, 2007, 24(6): 665–669.

    [58] 孙金生.水基钻井液成膜技术研究[D].成都: 西南石油大学, 2006.

    SUN Jinsheng. Research on film-forming technology of water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2006.

    [59] 王伟吉,邱正松,暴丹,等. 温压成膜封堵技术研究及应用[J]. 特种油气藏, 2015, 22(1): 144–147.

    WANG Weiji, QIU Zhengsong, BAO Dan, et al. Warm-compaction film-forming plugging and its application[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 144–147.

    [60] 袁春,孙金声,王平全,等. 抗高温成膜降滤失剂CMJ-1的研制及其性能[J]. 石油钻探技术, 2004, 32(2): 30–32.

    YUAN Chun, SUN Jinsheng, WANG Pingquan, et al. Development of CMJ-1: a high temperature film-forming fluid loss additive and the properties[J]. Petroleum Drilling Techniques, 2004, 32(2): 30–32.

    [61] 蒋官澄,毛蕴才,周宝义,等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液, 2018, 35(2): 1–16.

    JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 1–16.

    [62]

    MOHAMMADI M K, NOWTARKI K T, GHALAMBOR A. Successful application of non-damaging drill-in-fluids proves oil production improvement in heavy oil reservoirs[R]. SPE 199326, 2020.

    [63] 孙金声,苏义脑,罗平亚,等. 超低渗透钻井液提高地层承压能力机理研究[J]. 钻井液与完井液, 2005, 22(5): 1–3.

    SUN Jinsheng, SU Yinao, LUO Pingya, et al. Mechanism study on ultra-low invasion drilling fluid for improvement of formation pressure-bearing ability[J]. Drilling Fluid & Completion Fluid, 2005, 22(5): 1–3.

    [64] 孙金声,唐继平,张斌,等. 几种超低渗透钻井液性能测试方法[J]. 石油钻探技术, 2005, 33(6): 25–27.

    SUN Jinsheng, TANG Jiping, ZHANG Bin, et al. Methods for testing properties of ultra-low permeable drilling fluid[J]. Petroleum Drilling Techniques, 2005, 33(6): 25–27.

    [65]

    JIANG Guancheng, XUAN Yang, WU Xianzhu, et al. Method for preparation of biomimetic polymer for stabilizing wellbore and drilling fluid: US9410068[P]. 2016-08-09.

    [66] 谢晓永,孟英峰,唐洪明,等. 裂缝性低渗砂岩气藏水基钻井液欠平衡钻井储层保护[J]. 石油钻探技术, 2008, 36(5): 51–53.

    XIE Xiaoyong, MENG Yingfeng, TANG Hongming, et al. Underbalanced water based mud to protect fractured tight sandstone gas reservoirs[J]. Petroleum Drilling Techniques, 2008, 36(5): 51–53.

    [67] 胡进科,李皋,孟英峰. 页岩气钻井过程中的储层保护[J]. 天然气工业, 2012, 32(12): 66–70.

    HU Jinke, LI Gao, MENG Yingfeng. Reservoir protection in the process of shale gas drilling[J]. Natural Gas Industry, 2012, 32(12): 66–70.

    [68] 李皋,孟英峰,钟水清,等. MRC井与UBD相结合的技术潜力研究[J]. 钻采工艺, 2010, 33(1): 28–30.

    LI Gao, MENG Yingfeng, ZHONG Shuiqing, et al. Technical research on combination of MRC well and UBD technology[J]. Drilling & Production Technology, 2010, 33(1): 28–30.

    [69] 刘雪芬,康毅力,罗平亚,等. 界面修饰对致密砂岩气藏微孔系统渗流的调控[J]. 油田化学, 2015, 32(1): 137–140.

    LIU Xuefen, KANG Yili, LUO Pingya, et al. Seepage regulation of micro-pore system in tight sandstone gas reservoirs by interfacial modification[J]. Oilfield Chemistry, 2015, 32(1): 137–140.

    [70] 刘雪芬,康毅力,罗平亚,等. 氟化物对致密砂岩气体渗流能力的影响[J]. 石油学报, 2015, 36(8): 995–1003.

    LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone[J]. Acta Petrolei Sinica, 2015, 36(8): 995–1003.

    [71] 蒋官澄, 张县民, 王乐, 等.双阳离子氟碳表面活性剂及其制备方法和作为双疏型润湿反转剂的应用和钻井液及其应用: CN201710038133.1[P].2018-02-06.

    JIANG Guancheng, ZHANG Xianmin, WANG Le, et al. Double cation fluorocarbon surfactant and its preparation method and application as a double-phobic wetting inversion agent and drilling fluid and its application: CN201710038133.1[P]. 2018-02-06.

  • 期刊类型引用(36)

    1. 游利军,龚伟,康毅力,王艺钧. 致密/页岩油气储层保护技术研究进展与方向. 断块油气田. 2025(01): 27-34+152 . 百度学术
    2. 孙金声,许成元,康毅力,经浩然,张洁,杨斌,游利军,张瀚奭,龙一夫. 页岩储层钻井液-压裂液复合损害机理及保护对策. 石油勘探与开发. 2024(02): 380-388 . 百度学术
    3. 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议. 钻井液与完井液. 2024(01): 1-30 . 百度学术
    4. SUN Jinsheng,XU Chengyuan,KANG Yili,JING Haoran,ZHANG Jie,YANG Bin,YOU Lijun,ZHANG Hanshi,LONG Yifu. Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs. Petroleum Exploration and Development. 2024(02): 430-439 . 必应学术
    5. 赵向阳. 固相颗粒对致密油气藏裂缝应力敏感性影响的试验研究. 石油钻探技术. 2024(03): 68-74 . 本站查看
    6. 代金鑫,邵秀丽,何靖,刘涛. 低渗致密凝析气藏液锁伤害解堵液体系优选及评价. 复杂油气藏. 2024(02): 225-231+237 . 百度学术
    7. 王科,卢双舫,娄毅,李楠,李海涛,叶铠睿,张砚,李松雷. 压裂液渗吸与富气页岩气井典型生产规律关系剖析. 特种油气藏. 2024(03): 158-166 . 百度学术
    8. 孙金声,杨景斌,白英睿,吕开河,刘锋报. 深层超深层钻井液技术研究进展与展望. 石油勘探与开发. 2024(04): 889-898 . 百度学术
    9. SUN Jinsheng,YANG Jingbin,BAI Yingrui,LYU Kaihe,LIU Fengbao. Research progress and development of deep and ultra-deep drilling fluid technology. Petroleum Exploration and Development. 2024(04): 1022-1034 . 必应学术
    10. 王超群,张宇飞,苗海龙,邱正松,单锴. 惠州26-6区块低渗储层保护钻井液技术研究. 精细石油化工. 2024(06): 34-38 . 百度学术
    11. 章超,孙金声,吕开河,黄贤斌,戴嘉君,李茂,姚如钢. 疏水材料在油田化学领域研究进展与展望. 化工进展. 2024(11): 6293-6309 . 百度学术
    12. 单锴,邱正松,赵欣,钟汉毅,孙昊. 水基钻井液用热致膨胀型原位生酸暂堵剂的研制与性能评价. 应用化工. 2024(12): 2789-2792+2797 . 百度学术
    13. 兰晶晶,唐帆,谢代培,梁芯瑜,毛建英,王刚. 致密油藏CO_2驱油提高采收率实验研究. 当代化工. 2023(04): 997-1001 . 百度学术
    14. 邹才能,杨智,张国生,朱如凯,陶士振,袁选俊,侯连华,董大忠,郭秋麟,宋岩,冉启全,邱振,吴松涛,马锋,白斌,王岚,熊波,潘松圻,刘翰林,王小妮. 非常规油气地质学理论技术及实践. 地球科学. 2023(06): 2376-2397 . 百度学术
    15. 孙金声,蒋官澄. 钻井工程“血液”——钻完井液技术的发展现状与趋势. 前瞻科技. 2023(02): 62-74 . 百度学术
    16. 张平,王多才,王海峰,付亚平,王健,朱子恒,黄发木,余长江. 储层伤害分析与预防保护及解堵技术优化. 粘接. 2023(12): 119-122 . 百度学术
    17. 刘建坤,蒋廷学,黄静,吴春方,贾文峰,陈晨. 纳米材料改善压裂液性能及驱油机理研究. 石油钻探技术. 2022(01): 103-111 . 本站查看
    18. 曹辉,李宝军,赵向阳. 厄瓜多尔Tambococha油田水平井钻井液技术. 石油钻探技术. 2022(01): 54-59 . 本站查看
    19. 王岩,蒋华全,杨颖,李力民,陈家文. 气藏型储气库储层损害机理及保护技术研究. 中国石油和化工标准与质量. 2022(07): 185-187 . 百度学术
    20. 许成元,阳洋,蒲时,康毅力,李大奇,张杜杰,闫霄鹏,杨斌. 基于高效架桥和致密填充的深层裂缝性储层堵漏配方设计方法研究. 油气藏评价与开发. 2022(03): 534-544 . 百度学术
    21. 陈勇. 各向异性表征技术在页岩气储层探测中的应用. 能源与环保. 2022(06): 98-103 . 百度学术
    22. 章志轩,李方明,焦蓉,张传亮,何浩兰. 涩北气田压井液工艺研究. 当代化工. 2022(06): 1431-1434+1438 . 百度学术
    23. 张金发,管英柱,李亭,徐摩,陈菊,董为民. 致密沉凝灰岩储层特征及储层伤害评价——以三塘湖盆地马56块条湖组为例. 中国科技论文. 2022(09): 1027-1034+1056 . 百度学术
    24. 李小刚,秦杨,朱静怡,刘紫微,金心岫,高晨轩,靳文博,杜博迪. 自生酸酸液体系研究进展及展望. 特种油气藏. 2022(06): 1-10 . 百度学术
    25. 张小军,郭继香,许振芳,李建民,董景峰,张敬春. 压裂增产过程中页岩储层伤害机理研究进展. 科学技术与工程. 2022(34): 14991-14998 . 百度学术
    26. 任强,张明伟,钱咏波,王新亮,吴亚东. 渤海东部油田储层伤害分析及暂堵体系应用研究. 精细与专用化学品. 2021(01): 26-31 . 百度学术
    27. 刘萌洋. 大牛地气田低压低产气井胶束驱排解水锁技术研究及应用. 中外能源. 2021(06): 63-67 . 百度学术
    28. 闫霄鹏,许成元,康毅力,商翔宇,经浩然,林冲,张敬逸. 基于力链网络表征的裂缝封堵层结构失稳细观力学机制. 石油学报. 2021(06): 765-775 . 百度学术
    29. 洪祥宇,徐亨宇,崔风路,余昊,吴一宁,吴恒安,王奉超. 分子模拟在非常规油气开发中的应用. 计算力学学报. 2021(03): 313-320 . 百度学术
    30. 费繁旭,高阳,李映艳,覃建华,何吉祥,张玉龙,刘向君. 吉木萨尔页岩油藏人工裂缝渗透率变化规律. 科学技术与工程. 2021(20): 8329-8335 . 百度学术
    31. 李凯凯,安然,岳潘东,陈世栋,杨凯澜,韦文. 安83区页岩油水平井大规模蓄能体积压裂技术. 石油钻探技术. 2021(04): 125-129 . 本站查看
    32. 许成元,张洪琳,康毅力,游利军,方俊伟,张敬逸,闫霄鹏,谢智超,周贺翔. 深层裂缝性储层物理类堵漏材料定量评价优选方法. 天然气工业. 2021(12): 99-109 . 百度学术
    33. 黄英,王桂成,曹聪. 鄂尔多斯盆地中部龙咀沟区长2储层敏感性研究. 重庆科技学院学报(自然科学版). 2021(06): 1-4+15 . 百度学术
    34. 焦方正,邹才能,杨智. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发. 2020(06): 1067-1078 . 百度学术
    35. JIAO Fangzheng,ZOU Caineng,YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens. Petroleum Exploration and Development. 2020(06): 1147-1159 . 必应学术
    36. 李春景. 储层保护技术在井下作业施工中的应用及分析. 中国石油和化工标准与质量. 2020(22): 166-168 . 百度学术

    其他类型引用(8)

图(10)  /  表(4)
计量
  • 文章访问数:  1551
  • HTML全文浏览量:  453
  • PDF下载量:  229
  • 被引次数: 44
出版历程
  • 收稿日期:  2020-05-06
  • 网络出版日期:  2020-06-21
  • 刊出日期:  2020-06-30

目录

/

返回文章
返回