A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs
-
摘要:
在钻遇页岩气藏裂缝区地层时,正钻井的地层压力与原始地层压力有较大差异,压裂后地层压力比压裂前地层压力有显著升高,利用传统孔隙压力预测方法求取的页岩气藏裂缝区地层孔隙压力不够准确。针对该问题,分析了不同工况下页岩气藏裂缝区地层孔隙压力动态变化的原因以及页岩储层的压裂增压机理,并提出了一种钻遇天然裂缝区及压裂作业区时求取动态变化的页岩气储层孔隙压力的方法。应用实例表明,该方法原理简单、机理明确,与现场测试结果吻合程度高,为一种准确求取页岩气藏裂缝区动态变化孔隙压力的有效方法,具有较高的实用价值。
Abstract:When drilling through the fractured formations of a shale gas reservoir, the formation pressure will exhibits a significant difference from normal pressure as well as after fracturing. It is hard to obtain accurate formation pore pressure in fractured formations of shale gas reservoirs by using traditional pore pressure prediction methods. To tackle this problem, we analyze the causes of dynamic changes in formation pressure in fractured formations under different operating conditions. We also analyze the large increase of formation pressure after shale gas reservoirs stimulation. Based on those analyses, we propose a method of calculating pore pressure change in both naturally fractured and stimulated shale gas reservoirs. Applying the method shows it has asimple principle and clear mechanism, and gives results which highly agree with those from field tests. As an effective method for accurately calculating dynamic pore pressure in fractured formations of shale gas reservoirs, this method offers high practical value.
-
Keywords:
- shale gas reservoir /
- natural fracture /
- artificial fracture /
- pore pressure
-
-
表 1 压裂增压计算结果
Table 1 Calculation of formation pressure from stimulation
Vdc/
(104m3)Va/
(104m3)Vgs/
(104m3)Vgf/
(104m3)Vfl/
(104m3)孔隙压力当量
密度/(kg·L–1)压裂前 压裂后 5 250 80% Vdc 20 748.0 51.03 3 1.37 1.52 70% Vdc 18 154.5 44.65 1.54 60% Vdc 15 561.0 38.28 1.57 表 2 反演所输入参数及模型计算结果
Table 2 Parameter inputs for inversion and calculation results of model
输入参数 计算结果 井深/m 声波时差/(μs·m–1) 密度/(kg·L–1) 天然地层渗透率/mD 泊松比 天然裂缝孔隙压力当量密度/
(kg·L–1)压裂后孔隙压力当量密度/
(kg·L–1)3 648 217.37 2.62 0.14 0.21 1.25 1.58 3 649 216.89 2.58 0.12 0.21 1.22 1.54 3 650 216.35 2.61 0.09 0.21 1.26 1.56 3 651 215.77 2.63 0.08 0.21 1.28 1.58 3 652 215.06 2.59 0.10 0.20 1.22 1.54 3 653 214.00 2.60 0.11 0.20 1.23 1.54 3 654 212.85 2.61 0.10 0.20 1.24 1.55 3 655 212.31 2.60 0.09 0.20 1.23 1.54 注:取测试气层中段的测井数据用于反演,地层基质渗透率K=0.08 mD,压裂后等效渗透率Kc=0.4 mD,压裂前测试孔隙压力当量密度为1.28 kg/L,压裂后测试孔隙压力当量密度为1.54 kg/L。 -
[1] 张烨,潘林华,周彤,等. 页岩水力压裂裂缝扩展规律实验研究[J]. 科学技术与工程, 2015, 15(5): 11–16. ZHANG Ye,PAN Linhua,ZHOU Tong,et al. A study of hydraulic fracture propagation for shale fracturing[J]. Science Technology and Engineering, 2015, 15(5): 11–16.
[2] 郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59. GUO Yingtong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.
[3] COUZENS-SCHULTZ B A, AXON A, AZBEL K, et al. Pore pressure prediction in unconventional resources[R]. IPTC 16849, 2013.
[4] MATTHEWS M D. Uncertainty-shale pore pressure from borehole resistivity[R]. ARMA-04-551, 2004.
[5] PERVUKHINA M, PIANE C D, DEWHURST D N, et al. An estimation of pore pressure in shales from sonic velocities[R]. SEG-2013-0818, 2013.
[6] 徐春露,孙建孟,董旭,等. 页岩气储层孔隙压力测井预测新方法[J]. 石油学报, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006 XU Chunlu, SUN Jianmeng, DONG Xu, et al. A new pore pressure logging prediction method in shale gas reservoirs[J]. Acta Petrolei Sinica, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006
[7] 朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011 ZHU Baozhong. Drilling fluid technology for long horizontal shale gas well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
[8] 侯绪田,赵向阳,孟英峰,等. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30–36. HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, et al. Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30–36.
[9] 黄国平,何世明,汤明,等. 顺南区块裂缝性储层置换式气侵影响因素研究[J]. 石油钻探技术, 2018, 46(5): 21–25. HUANG Guoping, HE Shiming, TANG Ming, et al. A study on the effect of displacement gas cut on fractured reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21–25.
[10] 高树生,刘华勋,叶礼友,等. 页岩气藏SRV区域气体扩散与渗流耦合模型[J]. 天然气工业, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012 GAO Shusheng, LIU Huaxun, YE Liyou, et al. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J]. Natural Gas Industry, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012
[11] 刘铁成,唐海,刘鹏超,等. 裂缝性封闭页岩气藏物质平衡方程及储量计算方法[J]. 天然气勘探与开发, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008 LIU Tiecheng, TANG Hai, LIU Pengchao, et al. Material balance equation and reserve calculation method of fractured and closed shale-gas reservoir[J]. Natural Gas Exploration and Development, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008
[12] 董萌.天然气压缩因子计算方法对比及应用[D].大庆: 东北石油大学, 2015. DONG Meng. Comparison methods of compression factor of natural gas and its application[D]. Daqing: Northeast Petroleum University, 2015.
[13] 刘尧文,廖如刚,张远,等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007 LIU Yaowen, LIAO Rugang, ZHANG Yuan, et al. Application of surface-downhole combined microseismic monitoring technology in the Fuling Shale Gas Field and its enlightenment[J]. Natural Gas Industry, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007
[14] HE Jun, LING Kegang, PEI Peng, et al. Experimental investigation on the effect of pore pressure on rock permeability-Bakken formation case[R]. ARMA-2015-036, 2015.
[15] 郑有成.川东北部飞仙关组探井地层压力测井预测方法与工程应用研究[D].成都: 西南石油学院, 2004. ZHENG Youcheng. Study on logging prediction method and engineering application of exploration well formation pressure in Feixianguan Formation in Northeast Sichuan[D]. Chengdu: Southwest Petroleum Institute, 2004.
-
期刊类型引用(0)
其他类型引用(1)