页岩气藏裂缝区地层孔隙压力准确求取方法

王怡

王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法[J]. 石油钻探技术, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
引用本文: 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法[J]. 石油钻探技术, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
Citation: WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056

页岩气藏裂缝区地层孔隙压力准确求取方法

基金项目: 国家科技重大专项课题“涪陵页岩气水平井钻完井技术研究”(编号:2016ZX05060-012)、国家自然科学基金企业创新发展联合基金课题“高温高压油气安全高效钻完井工程基础理论与方法”(编号:U19B6003-05)、中国石化“十条龙”科技攻关项目课题“涪陵页岩气田焦石坝区块开发调整井钻完井关键技术”(编号:P18052-3)联合资助
详细信息
    作者简介:

    王怡(1982—),女,北京人,2004年毕业于西安科技大学土木工程专业,2009年获中国石油大学(北京)油气井工程专业博士学位,高级工程师,主要从事钻井地质环境因素描述及优快钻井技术方面的研究工作。E-mail:wangyi.sripe@sinopec.com

  • 中图分类号: TE21

A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs

  • 摘要:

    在钻遇页岩气藏裂缝区地层时,正钻井的地层压力与原始地层压力有较大差异,压裂后地层压力比压裂前地层压力有显著升高,利用传统孔隙压力预测方法求取的页岩气藏裂缝区地层孔隙压力不够准确。针对该问题,分析了不同工况下页岩气藏裂缝区地层孔隙压力动态变化的原因以及页岩储层的压裂增压机理,并提出了一种钻遇天然裂缝区及压裂作业区时求取动态变化的页岩气储层孔隙压力的方法。应用实例表明,该方法原理简单、机理明确,与现场测试结果吻合程度高,为一种准确求取页岩气藏裂缝区动态变化孔隙压力的有效方法,具有较高的实用价值。

    Abstract:

    When drilling through the fractured formations of a shale gas reservoir, the formation pressure will exhibits a significant difference from normal pressure as well as after fracturing. It is hard to obtain accurate formation pore pressure in fractured formations of shale gas reservoirs by using traditional pore pressure prediction methods. To tackle this problem, we analyze the causes of dynamic changes in formation pressure in fractured formations under different operating conditions. We also analyze the large increase of formation pressure after shale gas reservoirs stimulation. Based on those analyses, we propose a method of calculating pore pressure change in both naturally fractured and stimulated shale gas reservoirs. Applying the method shows it has asimple principle and clear mechanism, and gives results which highly agree with those from field tests. As an effective method for accurately calculating dynamic pore pressure in fractured formations of shale gas reservoirs, this method offers high practical value.

  • 图  1   案例井空间位置和平面位置示意

    Figure  1.   Space location and planar location of case wells

    图  2   同平台钻进地层压裂波及区与未波及区渗透率对比

    Figure  2.   Comparison on the permeability of fractured area and unswept area reached from the same platform

    图  3   不同工况下页岩裂缝区的地层孔隙压力

    Figure  3.   Formation pressure in shale fractured area under different operation conditions

    表  1   压裂增压计算结果

    Table  1   Calculation of formation pressure from stimulation

    Vdc/
    (104m3
    Va/
    (104m3
    Vgs/
    (104m3
    Vgf/
    (104m3
    Vfl/
    (104m3
    孔隙压力当量
    密度/(kg·L–1
    压裂前压裂后
    5 25080% Vdc20 748.051.0331.371.52
    70% Vdc18 154.544.651.54
    60% Vdc15 561.038.281.57
    下载: 导出CSV

    表  2   反演所输入参数及模型计算结果

    Table  2   Parameter inputs for inversion and calculation results of model

    输入参数 计算结果
    井深/m声波时差/(μs·m–1密度/(kg·L–1天然地层渗透率/mD泊松比 天然裂缝孔隙压力当量密度/
    (kg·L–1
    压裂后孔隙压力当量密度/
    (kg·L–1
    3 648217.372.620.140.21 1.251.58
    3 649216.892.580.120.21 1.221.54
    3 650216.352.610.090.21 1.261.56
    3 651215.772.630.080.21 1.281.58
    3 652215.062.590.100.20 1.221.54
    3 653214.002.600.110.20 1.231.54
    3 654212.852.610.100.20 1.241.55
    3 655212.312.600.090.20 1.231.54
     注:取测试气层中段的测井数据用于反演,地层基质渗透率K=0.08 mD,压裂后等效渗透率Kc=0.4 mD,压裂前测试孔隙压力当量密度为1.28 kg/L,压裂后测试孔隙压力当量密度为1.54 kg/L。
    下载: 导出CSV
  • [1] 张烨,潘林华,周彤,等. 页岩水力压裂裂缝扩展规律实验研究[J]. 科学技术与工程, 2015, 15(5): 11–16.

    ZHANG Ye,PAN Linhua,ZHOU Tong,et al. A study of hydraulic fracture propagation for shale fracturing[J]. Science Technology and Engineering, 2015, 15(5): 11–16.

    [2] 郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59.

    GUO Yingtong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.

    [3]

    COUZENS-SCHULTZ B A, AXON A, AZBEL K, et al. Pore pressure prediction in unconventional resources[R]. IPTC 16849, 2013.

    [4]

    MATTHEWS M D. Uncertainty-shale pore pressure from borehole resistivity[R]. ARMA-04-551, 2004.

    [5]

    PERVUKHINA M, PIANE C D, DEWHURST D N, et al. An estimation of pore pressure in shales from sonic velocities[R]. SEG-2013-0818, 2013.

    [6] 徐春露,孙建孟,董旭,等. 页岩气储层孔隙压力测井预测新方法[J]. 石油学报, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006

    XU Chunlu, SUN Jianmeng, DONG Xu, et al. A new pore pressure logging prediction method in shale gas reservoirs[J]. Acta Petrolei Sinica, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006

    [7] 朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011

    ZHU Baozhong. Drilling fluid technology for long horizontal shale gas well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011

    [8] 侯绪田,赵向阳,孟英峰,等. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30–36.

    HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, et al. Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30–36.

    [9] 黄国平,何世明,汤明,等. 顺南区块裂缝性储层置换式气侵影响因素研究[J]. 石油钻探技术, 2018, 46(5): 21–25.

    HUANG Guoping, HE Shiming, TANG Ming, et al. A study on the effect of displacement gas cut on fractured reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21–25.

    [10] 高树生,刘华勋,叶礼友,等. 页岩气藏SRV区域气体扩散与渗流耦合模型[J]. 天然气工业, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012

    GAO Shusheng, LIU Huaxun, YE Liyou, et al. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J]. Natural Gas Industry, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012

    [11] 刘铁成,唐海,刘鹏超,等. 裂缝性封闭页岩气藏物质平衡方程及储量计算方法[J]. 天然气勘探与开发, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008

    LIU Tiecheng, TANG Hai, LIU Pengchao, et al. Material balance equation and reserve calculation method of fractured and closed shale-gas reservoir[J]. Natural Gas Exploration and Development, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008

    [12] 董萌.天然气压缩因子计算方法对比及应用[D].大庆: 东北石油大学, 2015.

    DONG Meng. Comparison methods of compression factor of natural gas and its application[D]. Daqing: Northeast Petroleum University, 2015.

    [13] 刘尧文,廖如刚,张远,等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007

    LIU Yaowen, LIAO Rugang, ZHANG Yuan, et al. Application of surface-downhole combined microseismic monitoring technology in the Fuling Shale Gas Field and its enlightenment[J]. Natural Gas Industry, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007

    [14]

    HE Jun, LING Kegang, PEI Peng, et al. Experimental investigation on the effect of pore pressure on rock permeability-Bakken formation case[R]. ARMA-2015-036, 2015.

    [15] 郑有成.川东北部飞仙关组探井地层压力测井预测方法与工程应用研究[D].成都: 西南石油学院, 2004.

    ZHENG Youcheng. Study on logging prediction method and engineering application of exploration well formation pressure in Feixianguan Formation in Northeast Sichuan[D]. Chengdu: Southwest Petroleum Institute, 2004.

  • 期刊类型引用(0)

    其他类型引用(1)

图(3)  /  表(2)
计量
  • 文章访问数:  863
  • HTML全文浏览量:  323
  • PDF下载量:  91
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-12-07
  • 修回日期:  2020-04-02
  • 网络出版日期:  2020-04-14
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回