随钻超深电磁波仪器探测深度及响应特征模拟

黄明泉, 杨震

黄明泉, 杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
引用本文: 黄明泉, 杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
Citation: HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132

随钻超深电磁波仪器探测深度及响应特征模拟

基金项目: 国家科技重大专项“低渗透油气藏高效开发钻完井技术”课题1“低渗透油气深层高温高压随钻测控技术”(编号:2016ZX05021-001)和国家重点研发计划“深海关键技术与装备”(编号:2016YFC0302802)联合资助
详细信息
    作者简介:

    黄明泉(1969—),男,河南睢县人,1991年毕业于江汉石油学院电子仪器及测量专业,高级工程师,主要从事随钻测量仪器研究与应用工作。E-mail:hmqsddc@sohu.com

  • 中图分类号: P631.8+11

Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument

  • 摘要:

    研究不同天线组合的边界探测深度是研发随钻超深电磁波仪器的基础工作。采用数值模拟方法,研究了轴向天线、水平天线和倾斜天线3种接收天线的探测深度和响应特征,结果发现:随钻超深电磁波仪器的探测深度与线圈距、工作频率及地层电阻率对比度相关;不同电磁场分量对地层界面响应特征不同,超深探测轴向接收天线测电阻率比常规电磁波更容易受邻层影响;采用水平接收天线时,天线距越小,工作频率越大,定向电动势信号幅度越大;采用倾斜接收天线时,天线距越大,工作频率越大,相对定向信号幅度越大。对于随钻超深电磁波仪器,采用水平接收天线时天线距要小,采用倾斜接收天线时天线距要大;多个频率和天线距的组合可以增大随钻超深电磁波仪器的探测深度和对地层电阻率的适应性;通过降低工作频率、增大天线距,可使随钻超深电磁波仪器的探测深度达到20.00~30.00 m。研究认为,该探测深度能弥合地震和测井之间的差距,使随钻油藏描述成为可能。

    Abstract:

    Studying the boundary detection depth while drilling for different antenna combinations is the primary objective of developing ultra-deep electromagnetic wave instruments. The numerical simulation method has been used to study the boundary detection depth and response characteristics of three kinds of receiving antennas: axial antenna, horizontal antenna and tilted antenna. The simulation analysis suggested that the detection depth while drilling for the ultra-deep electromagnetic wave instrument was related to the antenna spacing, operating frequency and the formation resistivity contras. Further, it became clear that different electromagnetic field components had different response characteristics to the formation interface, and the axial resistivity measurement of ultra-deep detector was more likely to be affected by adjacent layers than the conventional electromagnetic waves. When the horizontal receiving antenna was used, the smaller the antenna spacing and the higher the operating frequency, the larger the potential signal amplitude of directional electromotive force. Then, when the tilted receiving antenna was used, the larger the antenna spacing and the higher the operating frequency, the larger the potential relative directional signal amplitude. While using the ultra-deep electromagnetic wave instrument while drilling, the antenna spacing should be small when the horizontal receiving antenna is used, and the distance should be large when the tilted receiving antenna is used. Further, the combination of multiple frequencies and antenna spacing can increase the detection depth while drilling and therefore, the adaptability to the formation resistivity of ultra-deep electromagnetic wave instrument. By reducing the operating frequency and increasing the antenna spacing, the detection depth of ultra-deep electromagnetic wave instrument while drilling can reach 20−30 m. The study showed that the detection depth could bridge the gap between seismic and well logging, and make it possible to describe the oil reservoir while drilling.

  • 图  1   天线组合模型示意

    Figure  1.   Schematic diagram of antenna combination model

    图  2   不同频率和不同天线距条件下Hzz的探测特性

    Figure  2.   Detection characteristics of Hzz at different frequencies and antenna spacing

    图  3   水平天线超深探测特性模拟结果

    Figure  3.   Simulation results of the ultra-deep detection characteristics with horizontal antenna

    图  4   水平天线全电阻率对比度超深探测特性模拟结果

    Figure  4.   Simulated results of the full resistivity contrast characteristics for ultra-deep detection with horizontal antenna

    图  5   倾斜天线超深探测模拟结果

    Figure  5.   Simulated results of ultra-deep detection with tilted antenna

    图  6   超深探测电阻率响应模拟结果

    Figure  6.   Simulation results of resistivity response for ultra-deep detection

    图  7   水平天线双界面响应模拟结果

    Figure  7.   Simulation results of dual interface response of horizontal antenna

    图  8   倾斜天线双界面响应模拟结果(幅度比)

    Figure  8.   Simulation results of dual interface response of tilted antenna (amplitude ratio)

    图  9   倾斜天线双界面响应模拟结果(相位差)

    Figure  9.   Response simulation of tilted antenna with double boundaries (phase shift)

  • [1] 高永德,陈鸣,蔡建荣,等. 基于地层边界探测的主动型地质导向技术在南海西部复杂油层中的应用[J]. 中国海上油气, 2014, 26(5): 63–69.

    GAO Yongde, CHEN Ming, CAI Jianrong, et al. An application of the active geosteering technique based on stratigraphic-boundary detection in complex reservoirs in the Western South China Sea[J]. China Offshore Oil and Gas, 2014, 26(5): 63–69.

    [2] 康俊佐,邢光龙,杨善德. 多传播电阻率测井的探测能力与资料处理方法[J]. 石油勘探与开发, 2006, 33(3): 345–350. doi: 10.3321/j.issn:1000-0747.2006.03.018

    KANG Junzuo, XING Guanglong, YANG Shande. Detective ability and data processing method of the MPR logging[J]. Petroleum Exploration and Development, 2006, 33(3): 345–350. doi: 10.3321/j.issn:1000-0747.2006.03.018

    [3] 张辛耘,王敬农,郭彦君. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    [4]

    FANG S, MERCHANT G A, HART E, et al. Determination of structural dip and azimuthal from LWD azimuthal propagation resistivity measurements in anisotropic formations[R]. SPE 116123, 2008.

    [5]

    YIN Hezhu, KUMIAWAN B. Resistivity a isotropy models and multi-component induction measurements: impact on Sw and uncertainty 0 Hpv estimation[R]. SPWLA-2008-LLLL, 2008.

    [6]

    LI Shanjun, CHEN Jiefu, BINFORD T L Jr. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.

    [7] 杨震,马清明,杨宁宁,等. 基于正交天线的随钻方位电磁波电阻率成像响应特征模拟[J]. 石油学报, 2018, 39(9): 1063–1069. doi: 10.7623/syxb201809010

    YANG Zhen, MA Qingming, YANG Ningning, et al. Imaging response characteristic simulation of azimuthal electromagnetic resistivity while drilling based on orthogonal antenna[J]. Acta Petrolei Sinica, 2018, 39(9): 1063–1069. doi: 10.7623/syxb201809010

    [8]

    BITTAR M S, KLEIN J, RANDY B, et al. A new azimuthal deep reading resistivity tool for geosteering and advanced formation evaluation[R]. SPE 109971, 2007.

    [9]

    SEIFERT D, CHEMALI R, BITTAR M, et al. The link between resistivity contrast and successful geosteering[R]. SPWLA-2011-VVV, 2011.

    [10]

    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.

    [11]

    HARTMANN A, VIANNA A, MAURER H M, et al.Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA -2014-MM, 2014.

    [12]

    ANDERSON B I, BARBER T D, GIANZERO S C. The effect of crossbedding anisotropy on induction tool response[R]. SPWLA-2001-v42n2a6, 2001.

    [13]

    HAGIWARA T. A new method to determine horizontal-resistivity in anisotropic formations without prior knowledge of relative dip[R].SPWLA-1996-Q, 1996.

    [14] 王昌学,周灿灿,储昭坦,等. 电性各向异性地层频率域电磁响应模拟[J]. 地球物理学报, 2006, 49(6): 1873–1883. doi: 10.3321/j.issn:0001-5733.2006.06.037

    WANG Changxue, ZHOU Cancan, CHU Zhaotan, et al. Modeling of electromagnetic responses in frequency domain to electrical anisotropic formations[J]. Chinese Journal of Geophysics, 2006, 49(6): 1873–1883. doi: 10.3321/j.issn:0001-5733.2006.06.037

    [15]

    WANG T, CHEMALI R E. Method of generating a deep resistivity image in LWD measurement: US7483793B2[P]. 2009-01-27[2019-02-17].

    [16]

    RABINOVICH M, LE F, LOFTS J, et al. Deep? how deep and what? the vagaries and myths of “look around” deep-resistivity measurements while drilling[R]. SPWLA-2011-NNN, 2011.

    [17] 杨震,杨锦舟,韩来聚,等. 随钻方位电磁波界面探测性能分析[J]. 石油学报, 2016, 37(7): 930–938. doi: 10.7623/syxb201607012

    YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7): 930–938. doi: 10.7623/syxb201607012

    [18] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035–2043.

    YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043.

    [19]

    OMERAGIC D, LI Qiming, CHOU L, et al. Deep directional electromagnetic measurement for optimal placement[R]. SPE 97045, 2005.

    [20]

    CALLEJA B, MARKET J, PITCHER J, et al. Multi-sensor Geosteering[R]. SPWLA-2010-82670, 2010.

    [21] 杨锦舟. 随钻方位电磁波仪器界面预测影响因素分析[J]. 测井技术, 2014, 38(1): 39–45, 50.

    YANG Jinzhou. Analysis on the affecting factors of prediction interface with azimuthal LWD electromagnetic tool[J]. Well Logging Technology, 2014, 38(1): 39–45, 50.

    [22]

    CHEMALI R E, CAIRNS P, WANG T, et al. Method for signal enhancement in azimuthal propagation resistivity while drilling: US7375530B2[P]. 2008-05-20[2019-02-17].

  • 期刊类型引用(28)

    1. 薛长荣,陈润生. 低渗透油田压裂技术研究分析. 石化技术. 2024(06): 117-119 . 百度学术
    2. 王纪伟,宋丽阳,康玉柱. 暂堵转向技术在页岩油气中的应用分析与发展方向. 断块油气田. 2024(06): 1122-1128 . 百度学术
    3. 王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 . 百度学术
    4. 刘彝,刘玲,姜喜梅,于洋洋,吴均. 大斜度井精细分段压裂技术研究及应用. 中国矿业. 2023(S1): 470-474 . 百度学术
    5. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    6. 于海山,刘洪俊,王庆太. 低渗透油田套损井压裂技术应用与效果分析. 石油石化节能与计量. 2023(10): 17-21 . 百度学术
    7. 刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用. 钻井液与完井液. 2022(01): 114-120 . 百度学术
    8. 胡智凡. 大庆低渗透储层直井多分支缝重复压裂提产试验. 采油工程. 2022(01): 16-20+81-82 . 百度学术
    9. 达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 . 本站查看
    10. 刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 . 本站查看
    11. 何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 . 本站查看
    12. 胡智凡,王贤君,王晓娟,王维,陈希迪. 直井缝内暂堵转向压裂分支缝起裂方向研究. 石油地质与工程. 2022(05): 111-114 . 百度学术
    13. 张金发,李亭,吴警宇,管英柱,徐摩,但植华,周明秀. 特低渗透砂岩储层敏感性评价与酸化增产液研制. 特种油气藏. 2022(05): 166-174 . 百度学术
    14. 张瀚澜,赖小娟,王鹏程,杨文飞,刘学文,马锐,曹建坤,杨明亮. 新型自降解压裂转向材料的合成与表征. 科学技术与工程. 2022(35): 15586-15591 . 百度学术
    15. 王贤君,胡智凡,张洪涛,陈希迪,王维. 大庆外围低渗透油田直井多分支缝压裂提产技术. 石油钻采工艺. 2022(05): 632-636 . 百度学术
    16. 朱瑞彬,王鑫,许正栋,刘国华,李凝,龙长俊,宋立,贾江芬. 吉兰泰浅层变质岩储层水平井压裂技术. 石油钻采工艺. 2022(06): 733-739 . 百度学术
    17. 秦浩,汪道兵,李敬法,孙东亮,宇波. 基于黏聚层单元的缝内暂堵压力演化规律的有限元数值研究. 科学技术与工程. 2021(10): 4011-4019 . 百度学术
    18. 王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 . 本站查看
    19. 侯祥丽,邓璐. 石油低渗透储层安全损害评价方法. 能源与环保. 2021(09): 142-148 . 百度学术
    20. 武月荣,高岗,谷向东. 苏里格气田水平井段内精细分簇压裂技术研究与应用. 钻采工艺. 2021(06): 59-63 . 百度学术
    21. 王晓蕾,张超会,张洪涛,胡智凡,魏天超. 致密油储层直井多分支缝压裂提产试验. 采油工程. 2021(02): 11-16+91 . 百度学术
    22. 梁玉凯,于晓聪,袁辉,阚长宾,陶世林,马丁. 低渗透油藏自发生成中相微乳液洗油体系. 油田化学. 2021(04): 690-696 . 百度学术
    23. 王峻源,徐太平,周京伟,袁发明. 高强度长效暂堵剂在水平井重复压裂上的应用. 化工设计通讯. 2020(08): 83-85 . 百度学术
    24. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 . 百度学术
    25. 蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 . 百度学术
    26. 覃孝平,吴均,李翠霞,卢军凯. 压裂用水溶性暂堵剂的合成及性能. 石油化工. 2020(09): 898-904 . 百度学术
    27. 李翠霞,覃孝平,张琰,赵彬. 水溶性AM-AA-NVP-AMPS-PDE暂堵剂的合成与性能. 化学研究与应用. 2020(10): 1884-1890 . 百度学术
    28. 施建国,于洋,王黎,李立,宋志龙. 超大粒径暂堵剂注入装置研究. 石油矿场机械. 2020(06): 74-78 . 百度学术

    其他类型引用(3)

图(9)
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  337
  • PDF下载量:  74
  • 被引次数: 31
出版历程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-10-13
  • 网络出版日期:  2019-12-27
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回