Technology for Drilling Speed Increase Using Stable WOB/Torque for Hard Formations
-
摘要:
采用PDC钻头钻进硬地层时,如果破岩扭矩较小或波动幅度较大,易造成钻头恶性振动和钻头使用寿命短,从而导致机械钻速低和钻井周期长。因此,建立了PDC钻头破岩所需门限扭矩的计算模型,以门限扭矩定量计算为核心、平稳传递钻柱应变能为手段,形成了硬地层稳压稳扭钻井提速技术。该技术通过优化井眼尺寸、选用合适的钻头和冲击类辅助破岩工具,降低破岩门限扭矩和门限钻压;通过选择合适的井下动力钻具,为钻头提供足够的破岩能量;通过选用减振工具和优选钻井参数,降低振动,保证钻头运动平稳。稳压稳扭钻井提速技术在夏河1井古生界硬地层进行了现场试验,二叠系机械钻速提高485.6%、全井机械钻速提高70.4%,取得了显著的提速效果。研究结果表明,稳压稳扭钻井提速技术能够提高硬地层机械钻速,可为复杂地层钻井提速提供借鉴。
Abstract:When a PDC bit is used to drill hard rock, the large torque is required, and the fluctuating torque would cause severe vibration and short service life of drill bit, hence resulting in low ROP and long drilling period. By establishing a calculation model for the required threshold torque of rock breaking, a stable WOB/torque technology for increasing drilling speed in hard formation has been developed based on quantitative calculation of threshold torque, adhering to smooth transmitting of drill string strain energy. By means of optimizing the wellbore size, selecting the appropriate bit and impact-assisted rock breaking tools, the threshold torque and WOB of rock breaking can be reduced. By selecting the appropriate PDM drilling tools, the sufficient rock breaking energy for the bit can be provided. Through optimization of appropriate shock-absorbing tools and drilling parameters, the new technologies can reduce vibration and ensure smooth operation of drill bit. During the field test in Paleozoic hard formation of Well Xiahe-1, the ROP in Permian strata was increased by 485.6% and the whole well ROP increased by 70.4%, achieving remarkable effects for increasing drilling rate. The research results showed that stable WOB/torque drilling technology could effectively improve the ROP in hard formation, and provide reference for increasing drilling rate in complex formations.
-
Keywords:
- hard formation /
- threshold torque /
- threshold bit weight /
- penetration rate /
- field testing /
- Well Xiahe-1
-
-
-
[1] MENSA-WILMOT G, FEAR M J. The effects of formation hardness, abrasiveness, heterogeneity and hole size on PDC bit performance[R]. SPE 67698, 2001.
[2] WARREN T M, OSTER J H. Torsional resonance of drill collars with PDC bits in hard rock[R]. SPE 49204, 1998.
[3] 张东清. 龙凤山气田北209井钻井提速技术[J]. 石油钻探技术, 2016, 44(4): 22–26. ZHANG Dongqing. Enhancement of ROP in Well Bei-209 of the Longfengshan Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(4): 22–26.
[4] 乔领良,胡大梁,肖国益. 元坝陆相高压致密强研磨性地层钻井提速技术[J]. 石油钻探技术, 2015, 43(5): 44–48. QIAO Lingliang, HU Daliang, XIAO Guoyi. ROP improvement technology for high-pressure terrestrial tight abrasive formations in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(5): 44–48.
[5] 兰凯,刘香峰. 钻柱恶性振动识别与抑制技术研究进展[J]. 吉林大学学报(地球科学版), 2017, 47(1): 203–214. LAN Kai, LIU Xiangfeng. Research advances in drillstring excessive vibration identification and control techniques[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 203–214.
[6] MIRANI A, SAMUEL R. Mitigating vibration induced drillstring failures using data analytics: workflow and case study[R]. SPE 178849, 2016.
[7] 孙源秀,邹德永,郭玉龙,等. 切削–犁削混合钻头设计及现场应用[J]. 石油钻采工艺, 2016, 38(1): 53–56. SUN Yuanxiu, ZOU Deyong, GUO Yulong, et al. Design and field application of plow-cutting PDC bit[J]. Oil Drilling & Production Technology, 2016, 38(1): 53–56.
[8] SEGAL S, FORD R. PDC drill bit innovations drive performance in challenging zones[EB/OL]. [2019-02-22]. https://www.hartenergy.com/exclusives/PDC-drill-bit-innovations-drive-performance-in-challenging-zone-19228.
[9] 陶兴华,张建龙,曾义金. 石油旋冲钻井技术研究及应用[J]. 石油钻采工艺, 1998, 20(2): 27–30. TAO Xinghua, ZHANG Jianlong, ZENG Yijin. Study and application of rotary percussion drilling technology[J]. Oil Drilling & Production Technology, 1998, 20(2): 27–30.
[10] 玄令超,管志川,呼怀刚,等. 弹性蓄能激发式旋冲钻井工具特性分析[J]. 石油钻探技术, 2016, 44(3): 61–66. XUAN Lingchao, GUAN Zhichuan, HU Huaigang, et al. Analysis of the characteristics of the rotary impact drilling tool with an elastic element accumulator[J]. Petroleum Drilling Techniques, 2016, 44(3): 61–66.
[11] 马广军,王甲昌,张海平. 螺杆驱动旋冲钻井工具设计及试验研究[J]. 石油钻探技术, 2016, 44(3): 50–54. MA Guangjun, WANG Jiachang, ZHANG Haiping. The design and experimental study of PDM driven rotary percussion drilling tool[J]. Petroleum Drilling Techniques, 2016, 44(3): 50–54.
[12] 彭明旺,李双贵,吴双喜,等. 扭力冲击发生器在塔河油田的应用[J]. 断块油气田, 2012, 19(5): 622–625. PENG Mingwang, LI Shuanggui, WU Shuangxi, et al. Application of torkbuster in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2012, 19(5): 622–625.
[13] 查春青,柳贡慧,李军,等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术, 2017, 45(1): 57–61. ZHA Chunqing, LIU Gonghui, LI Jun, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57–61.
[14] 韩飞,郭慧娟,戴扬,等. PDC钻头扭矩控制技术分析[J]. 石油矿场机械, 2012, 41(12): 69–71. doi: 10.3969/j.issn.1001-3482.2012.12.018 HAN Fei, GUO Huijuan, DAI Yang, et al. Analysis of PDC bit torque controlling technology[J]. Oil Field Equipment, 2012, 41(12): 69–71. doi: 10.3969/j.issn.1001-3482.2012.12.018
[15] 孙连忠,张进双,王磊,等. 泥岩地层PDC钻头钻井参数优化方法[J]. 钻采工艺, 2015, 38(3): 26–29. SUN Lianzhong, ZHANG Jinshuang, WANG Lei, et al. Drilling parameter optimization method for PDC bit in shale formations[J]. Drilling & Production Technology, 2015, 38(3): 26–29.
[16] 狄勤丰,平俊超,李宁,等. 钻柱振动信息测量技术研究进展[J]. 力学与实践, 2015, 37(5): 565–579. DI Qinfeng, PING Junchao, LI Ning, et al. Progress in measurement technology for drill string vibration[J]. Mechanics in Engineering, 2015, 37(5): 565–579.
[17] SAMPAIO R, PIOVAN M T, LOZANO G V. Coupled axial/torsional vibrations of drill-strings by means of non-linear model[J]. Mechanics Research Communications, 2007, 34(5/6): 497–502.
[18] CAICEDO H U, CALHOUN W M, EWY R T. Unique ROP predictor using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength impacts drilling performance[R]. SPE 92576, 2005.
[19] 胡大梁,严焱诚,李群生,等. 混合钻头在元坝须家河组高研磨性地层的应用[J]. 钻采工艺, 2013, 36(6): 8–12. doi: 10.3969/J.ISSN.1006-768X.2013.06.03 HU Daliang, YAN Yancheng, LI Qunsheng, et al. Application of hybrid drill bit in Xujiahe high abrasive formation of Yuanba Gas Field[J]. Drilling & Production Technology, 2013, 36(6): 8–12. doi: 10.3969/J.ISSN.1006-768X.2013.06.03
[20] 王兴武,赵国顺,孙雪, 等. 巴楚探区深井钻井难点分析与技术对策[J]. 石油钻采工艺, 2011, 33(3): 1–4. doi: 10.3969/j.issn.1000-7393.2011.03.001 WANG Xingwu, ZHAO Guoshun, SUN Xue, et al. Technical countermeasures and analysis on deep well drilling difficulties in Bachu exploration block[J]. Oil Drilling & Production Technology, 2011, 33(3): 1–4. doi: 10.3969/j.issn.1000-7393.2011.03.001
[21] 王杰东,杨立,郑宁,等. 玛北1井四开抗高钙盐水侵钻井液技术[J]. 钻井液与完井液, 2013, 30(6): 88–90. doi: 10.3969/j.issn.1001-5620.2013.06.026 WANG Jiedong, YANG Li, ZHENG Ning, et al. The drilling fluids techniques on anti-contamination of calcium-rich brine in the fourth interval of Mabei-1[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 88–90. doi: 10.3969/j.issn.1001-5620.2013.06.026
-
期刊类型引用(9)
1. 马西涛,王迎欣,马睿文,戴文伟,万娇,熊宗茜,黄剑英,吴亚芊,赵丰. 反相乳液聚合法制备抗盐型两性共聚物P(AM-AA-AMPS-DAC)乳液. 江西化工. 2024(02): 64-67+71 . 百度学术
2. 何世伟,靳永红,王磊,王犁,鲁红升. 橡胶颗粒增强双网络结构堵水冻胶性能研究. 石油与天然气化工. 2024(03): 73-78 . 百度学术
3. 尚成新,伏露瑶,范旭泽,林家良,刘嘉春. 聚丙烯酰胺树脂的反相悬浮聚合制备及吸水性能研究. 化学研究与应用. 2024(08): 1861-1867 . 百度学术
4. 杨鹂,张春梅,梅开元,李尚东,程小伟,钟紫芩,李心雨,吴琦美. 油井水泥用抗分散聚合物的制备及其性能评价. 中国粉体技术. 2024(05): 132-145 . 百度学术
5. 罗志锋,张浩飞,赵立强,何杰,扶浩然,赵金明,闫朝宗. 耐200℃高温、低伤害压裂液稠化剂. 油田化学. 2024(03): 393-399+405 . 百度学术
6. 罗梓轩,袁斌,张世阔,邢艳斌,张相春. 耐温水基聚合物压裂液制备及性能评价. 当代化工. 2024(09): 2036-2039+2044 . 百度学术
7. 杨嫱,贺雪红,孙连爽. 纳米氧化铝颗粒强化泡沫压裂液稳定性研究. 精细石油化工. 2024(06): 39-42 . 百度学术
8. 周柄男,丁秋炜,吴婧,张昕,张宇,滕大勇. 压驱用不对称双子型表面活性剂的制备与复配及性能评价. 石油化工. 2024(12): 1779-1786 . 百度学术
9. 龚嘉顺,李锦锋,李倩,王茜,蔡廷强,黄飞飞,武佳. 新型纳米复合聚合物压裂液体系研究及应用. 钻采工艺. 2023(06): 133-139 . 百度学术
其他类型引用(1)