基于震源机制关系的长宁-威远区块套管变形分析

陈朝伟, 王鹏飞, 项德贵

陈朝伟, 王鹏飞, 项德贵. 基于震源机制关系的长宁-威远区块套管变形分析[J]. 石油钻探技术, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019
引用本文: 陈朝伟, 王鹏飞, 项德贵. 基于震源机制关系的长宁-威远区块套管变形分析[J]. 石油钻探技术, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019
CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019
Citation: CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019

基于震源机制关系的长宁-威远区块套管变形分析

基金项目: 

国家科技重大专项"工厂化钻井关键技术研究及应用"(编号:2016ZX05022-001)部分研究内容。

详细信息
    作者简介:

    陈朝伟(1979-),男,辽宁葫芦岛人,2001年毕业于湖南大学工程力学专业,2007年获北京大学固体地球物理专业博士学位,高级工程师,主要从事储层地质力学研究。

  • 中图分类号: P631.4+43

Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism

  • 摘要: 四川长宁-威远页岩气示范区套管变形问题突出,天然裂缝或断层是导致套管变形的主要因素。为了明确引起套管变形的裂缝或断层尺度与微地震震级之间的关系,分析了圆形断层模型的震源参数关系,建立了由断层半径、滑移距离、地震矩和矩震级等参数组成的数学模型。首先根据24臂井径测井数据或通过套管变形点的磨鞋最大直径来确定断层的滑动量(即套管变形量),然后利用该模型计算得到引起套管变形的裂缝或断层的半径和微地震震级。计算结果表明,引起长宁-威远区块套管变形的裂缝或断层的半径为100~400 m,微地震距震级为2.0~3.5,这与现场实测数据吻合,表明该模型在长宁-威远区块具有一定的可靠性和实用性,也验证了套管变形机理的正确性。研究结果对于井眼轨道优化设计、压裂过程中的实时微地震监测与套管变形预防及治理具有一定的指导作用。
    Abstract: Casing deformation is a very serious problem in the Changning-Weiyuan Shale Gas Demonstration Area in Sichuan Province,where natural fractures(or faults)create problems,and in fact are the main controlling factor of casing deformation.In order to understand the effect of microseismic magnitude and fractures(or faults)and the scale which induces casing deformation,a study employed the source parameters of the circular fault model,and a mathematical model reflecting the relationships among parameters(e.g.fault radius,slip throw,seismic moment and moment magnitude)was developed.In practical application,the slip throw of fault(i.e.,casing deformation)is estimated by using 24-finger caliper logging data or the maximum diameter of grind shoe through the casing deformation position.Then the model is used to calculate the fracture or fault radius and the microseismic magnitude which can be related to the casing deformation.The calculated microseismic magnitude and fracture or fault radius related to casing deformation in Changning-Weiyuan Block are 2.0-3.5 and 100-400 m,respectively;the results are consistent with the measured data.The results also demonstrated a certain reliability and practicability of this model in the Changning-Weiyuan Block and verified the casing deformation mechanism.The research results can be used as references in wellbore trajectory optimization design,real-time microseismic monitoring during hydraulic fracturing and in the prevention and control of casing deformation.
  • [1] 田中兰,石林,乔磊.页岩气水平井井筒完整性问题及对策[J].天然气工业,2015,35(9):70-76. TIAN Zhonglan,SHI Lin,QIAO Lei.Research and countermeasure for wellbore integrity of shale gas horizontal well[J].Natural Gas Industry,2015,35(9):70-76.
    [2] 陈朝伟,石林,项德贵.长宁-威远页岩气示范区套管变形机理及对策[J].天然气工业,2016,36(11):70-75. CHEN Zhaowei,SHI Lin,XIANG Degui.Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J].Natural Gas Industry,2016,36(11):70-75.
    [3]

    KRISTIANSEN T G,BARKVED O,PATTILLO P D.Use of passive seismic monitoring in well and casing design in the compacting and subsiding Valhall Field,North Sea[R].SPE 65134,2000.

    [4]

    MAXWELL S C,JONES M,PARKER R,et al.Fault activation during hydraulic fracturing[R].SEG 2009-1552,2009.

    [5]

    SMITH R J.15 years of passive seismic monitoring at Cold Lake,Alberta[J].Recorder,2010,35(7):7-13.

    [6]

    WARPINSKI N R,DU Jing,ZIMMER U.Measurements of hydraulic-fracture-induced seismicity in gas shales[R].SPE 151597,2012.

    [7]

    MAXWELL S C.Anomalous induced seismic deformation associated with hydraulic fracturing[R].SPE 167181,2013.

    [8]

    WARPINSKI N R.A review of hydraulic-fracture induced microseismicity[R].ARMA-2014-7774,2014.

    [9]

    PIRAYEHGAR A,DUSSEAULT M B.Numerical investigation of seismic events associated with hydraulic fracturing[R].ISRM-13CONGRESS-2015-168,2015.

    [10]

    BAO Xuewei,EATON D W.Fault activation by hydraulic fracturing in Western Canada[J].Science,2016,354(6318):1406-1409.

    [11]

    AKI K,RICHARDS P G.Quantitative seismology[M].2nd ed.California:University Science Books, 2002:146-177.

    [12]

    STEIN S,WYSESSION M.An introduction to seismology,earthquakes,and earth structure[M].Oxford:Blackwell Publishing,2003:263-273.

    [13]

    BOORE D M, BOATWRIGHT J.Average body-wave radiation coefficients[J].Bulletin of the Seismological Society of America,1984,74(5):1615-1621.

    [14]

    HANKS T C,KANAMORI H.A moment magnitude scale[J].Journal of Geophysical Research,1979,84(B5):2348-2350.

    [15]

    KANAMORI H,ANDERSON D L.Theoretical basis of some empirical relations in seismology[J].Bulletin of the Seismological Society of America,1975,65(5):1073-1095.

    [16]

    CIPOLLA C L,MACK M G,MAXWELL S C,et al.A practical guide to interpreting microseismic measurements[R].SPE 144067,2011.

    [17]

    MUKUHIRA Y,ASANUMA H,NⅡTSUMA H,et al.Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel,Switzerland[J].Geothermics,2013,45(45):1-17.

    [18] 赵翠萍,陈章立,华卫,等.中国大陆主要地震活动区中小地震震源参数研究[J].地球物理学报,2011,54(6):1478-1489. ZHAO Cuiping,CHEN Zhangli,HUA Wei,et al.Study on source parameters of small to moderate earthquakes in the main seismic active regions,China mainland[J].Chinese Journal of Geophysics,2011,54(6):1478-1489.
  • 期刊类型引用(13)

    1. 肖平. 振荡螺杆钻具内部流场仿真分析及室内试验. 石油机械. 2023(09): 41-47 . 百度学术
    2. 史配铭,倪华峰,石崇东,王学枫,王万庆,屈艳平. 苏里格致密气藏超长水平段水平井钻井完井关键技术. 石油钻探技术. 2022(01): 13-21 . 本站查看
    3. 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验. 石油钻探技术. 2022(01): 71-75 . 本站查看
    4. 艾白布·阿不力米提,庞德新,刘永红,麦尔耶姆古丽·安外尔,孙长友,郭新维,陈波. 井下自激脉冲射流增能装置设计及其射流冲击特性. 江苏大学学报(自然科学版). 2022(04): 472-480 . 百度学术
    5. 乔凌云,王亮,芦琳,李鸿斌,张超,周云,马姣姣. 连续油管水力振荡器断裂失效分析. 焊管. 2022(07): 32-36+41 . 百度学术
    6. 张飞. 自激式无反馈流道涡流水力振荡器分析. 佳木斯大学学报(自然科学版). 2022(04): 96-98 . 百度学术
    7. 李俊雄,夏成宇,韩雪莹,郭良林,伊亚辉,关明. PB-BBD响应面法优化全金属水力振荡器性能的研究. 机床与液压. 2022(18): 35-39 . 百度学术
    8. 李勇政,陈涛,江川,杜江. 四川盆地磨溪–高石梯区块定向钻井关键技术. 石油钻探技术. 2021(02): 26-31 . 本站查看
    9. 陈新勇,徐明磊,马樱,徐雅萍,赵博,韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术. 石油钻探技术. 2021(02): 14-19 . 本站查看
    10. 史配铭,李晓明,倪华峰,石崇东,姜庆波,程华林. 苏里格气田水平井井身结构优化及钻井配套技术. 石油钻探技术. 2021(06): 29-36 . 本站查看
    11. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看
    12. 常腾腾,邹俊,王瑜,王志乔,夏柏如. 基于涡轮-转阀驱动的小直径水力振荡减阻器设计研究. 地质与勘探. 2020(04): 832-837 . 百度学术
    13. 王传鸿,邹刚,周歆,杨小城. 自激式水力振荡器结构性能及其振动特性研究. 石油机械. 2020(11): 16-21 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  7836
  • HTML全文浏览量:  81
  • PDF下载量:  6644
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-01-02
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-08-24

目录

    /

    返回文章
    返回