Technologies for Raising the Oil Drainage Rate with Vertical-Horizontal Well Combinations in SAGD Mode
-
摘要: 针对辽河油田直井与水平井组合SAGD井组在开发过程中存在泄油速率低、蒸汽腔扩展不均匀等问题,以R.M.Bulter建立的双水平井泄油模型为理论基础,将直井与水平井简化为双水平井,在考虑端点效应有限长度水平井日产量方程的基础上,建立了水平井的泄油速率模型,并得到直井与注汽水平井组合SAGD上产和稳产阶段的泄油速率方程。分析泄油速率方程发现,直井与水平井组合SAGD井组泄油速率的主控因素为泄油井点数和蒸汽腔纵向扩展高度,结合辽河油田稠油开发实践,给出了直井与水平井组合SAGD井组提高泄油速率的技术措施,即水平段跟部注汽井增加2口,并将注汽井注汽排量提高20%,同时将最佳射孔位置设在靠近低物性段处,补孔长度确定为8 m。该技术在辽河油田6井组进行了现场应用,日产油量均呈现不同程度的上升,取得阶段性成功,为进一步提高SAGD井组泄油速率奠定了良好的基础。Abstract: Due to the low drainage rate and the uneven expansion of steam cavity appearing in the development of the Liaohe Oilfield which utilizes a vertical-horizontal well combination by steam assisted gravity drainage (SAGD), a horizontal-well drainage rate model was developed. It focused on a daily output equation for horizontal wells which have limited length and take into account the point effect (following the theory of R. M. Butler). With a dual-horizontal-well drainage model, and the vertical-horizontal well group was simplified as dual horizontal wells, finally, the drainage rate equation that was used for vertical well and horizontal steam injection well in SAGD. The drainage model was developed and applied to the stages of initial production and stable production. It is shown from the analysis on drainage rate equation that the drainage rate of vertical-horizontal well group SAGD is mainly controlled by the quantity of oil drainage wells and the vertical expansion height of the steam cavity. Combined with the heavy oil development practice in Liaohe Oilfield, the technical measures for increasing the drainage rate of vertical-horizontal well group SAGD were proposed. The approach involved drilling another two steam injection wells at the heel of the horizontal section and to increase the steam injection rate by 20%. Meanwhile, the best perforation position was set near the sections with low physical properties, with reperforation length of 8 m. These technical measures were applied to 6 well groups in the Liaohe Oilfield, and as a result, the daily oil production increased by different percentages. This research with field test provides the good basis for further improving the drainage rate of SAGD well groups.
-
Keywords:
- vertical well /
- horizontal well /
- steam /
- gravity drainage /
- oil drainage rate
-
随着勘探开发技术的不断进步,页岩油已成为世界各国油气勘探的重点。由于页岩储层孔喉细小,渗透率极低,导致页岩油藏一次衰竭采收率极低,主要通过加密钻井技术和多级水力压裂技术实现一次采油的短期增产[1-3]。对于大多数地层能量不足的页岩储层,注气是一种常用的方法,与其他气体相比,CO2与页岩油的最小混相压力最低,不但易溶解在页岩油中增大原油体积系数,降低原油黏度,还能在压力大于7.38 MPa、温度高于31.2 ℃时达到超临界状态。CO2注入分为驱替和吞吐2种方式[4-5],其中CO2吞吐具有用量少、规模小和见效快的优势,学者们也针对CO2吞吐技术开展了深入研究。F. Torabi等人[6-7]通过室内CO2吞吐试验,研究了渗透率、CO2注入压力、闷井时间和吞吐次数等参数对低渗透油藏采收率的影响。杨正明等人[8]进行了岩心吞吐试验,认为第一轮吞吐是CO2吞吐的关键,最佳吞吐次数为3次,CO2波及体积随着闷井时间的增长而增大;但注入过量的CO2,会导致CO2利用率和排油率降低。钱坤等人[9-10]引入核磁共振方法,从微观尺度研究了CO2注入压力、注气速度和闷井时间对微观孔隙的动用程度,评价了微观剩余油的分布特征。
然而,页岩储层开发过程中必然伴随着水力压裂增产技术,压裂后的地层中形成和分布了大量裂缝,目前大部分研究主要集中在CO2吞吐提高采收率和注采参数优化等方面[11-13],对于压裂后裂缝的渗流特征及裂缝与基质之间的流体交换特征,以及不同渗透率条件下裂缝对CO2吞吐效果的影响研究很少。因此,笔者选取江汉油田潜3段储层不同渗透率级别页岩,开展了CO2吞吐试验,研究了裂缝对不同渗透率储层CO2吞吐效果的影响,并结合低场核磁共振技术,从微观孔隙尺度揭示了吞吐过程中裂缝–基质之间的流体交换特征,定量评价了小孔隙、大孔隙的动用程度,为评价裂缝性页岩储层产油特征、改善生产动态提供了依据和参考。
1. CO2吞吐试验
1.1 试验岩心
试验用页岩取自江汉油田王场地区潜3段,从所有钻取的短岩心中选孔隙度和渗透率相近的2块岩心作为一组,共选取3组6块岩心进行试验,其基本参数见表1。由表1可知,1#和2#页岩的平均孔隙半径最小,5#和6#页岩渗透率最大(平均孔隙半径也最大),3#和4#页岩储层物性居中。此外,为了模拟CO2–原油在裂缝与基质间的渗流特征,避免CO2注入后直接沿裂缝窜流,将1#、3#和5#岩心按照总体积的1/3横向切割(见图1),模拟人造裂缝。
表 1 试验岩心基本参数Table 1. Basic parameters of experimental cores岩心编号 长度/mm 直径/mm 孔隙度, % 渗透率/mD 有机碳含量,% 平均孔隙半径/nm 裂缝横向长度/mm 裂缝纵向长度/mm 1# 80.3 25.1 9.45 0.007 5 3.77 11.72 80.3 21.6 2# 81.3 25.2 8.76 0.005 2 3.59 8.13 无裂缝 无裂缝 3# 78.4 25.1 8.95 0.027 0 3.08 16.81 78.4 22.4 4# 79.2 25.2 9.57 0.044 0 2.74 19.24 无裂缝 无裂缝 5# 81.1 25.1 10.22 0.086 0 1.66 27.43 81.1 22.1 6# 80.6 25.1 11.38 0.094 0 2.14 24.86 无裂缝 无裂缝 1.2 试验流体
试验原油取自生产层位为潜3段的地面分离器原油。储层温度(73 ℃)下原油密度为0.862 kg/L,黏度为4.74 mPa·s。原油组分色谱分析结果表明,目标储层原油中C5—C25的摩尔分数为61.3%,而C32+的摩尔分数为11.2%,说明目标储层原油组分整体偏轻,但仍然含有一定量的重质组分。长细管(细管直径4.52 mm,长度150 mm)试验结果表明,在目标储层条件(18.7 MPa、73 ℃)下,原油与CO2的最小混相压力为20.4 MPa,说明在目前储层条件CO2与原油无法达到混相。测得不同压力下不同CO2溶解比例下的原油膨胀系数如图2所示,可以看出随着平衡压力增大,即随着CO2溶解量增大,原油膨胀系数呈线性增大;当平衡压力达到18.7 MPa时,原油膨胀率达到43.8%,说明目标储层原油具有较高的CO2溶解性和膨胀性。
1.3 试验装置
CO2吞吐试验装置包括多尺寸可调节无磁岩心夹持器、高压活塞驱替泵、恒温箱、压力传感器、回压阀、油气分离器(精度0.1 mL)、气体流量计和SPEC-RC2型低场核磁共振扫描仪等(见图3)。其中,岩心夹持器可夹持的岩心最大直径45 mm,长度120 mm;驱替泵的流量精度小于0.2 μL/min,压力精度小于0.5%;低场核磁共振扫描仪的磁场强度为0.23 T±0.03 T,脉冲发生器最小间隔50 ns,数字采集器脉冲精度100 ns,频率合成器范围1~40 MHz。
1.4 试验步骤
1)将所有岩心用甲苯和石油醚反复清洗后,放入200 ℃烘箱中加热24 h,充分排出岩心中的水蒸气,再将岩心放入高压密闭釜中抽真空48 h。
2)将试验原油在恒压50 MPa下注入放有页岩的高压密闭釜,充分饱和至注入泵体积不再变化时,恒压老化7 d;降压后取出页岩,将切割好的岩心放入热缩套管中,将岩心密封于套管中,确保试验过程中岩心裂缝尺寸不变;对饱和油后的岩心进行T2谱扫描。
3)将岩心放入夹持器中,加围压后关闭岩心出口端,从另一端以0.5 mL/min速度向岩心中恒速注入CO2,当注入体积达到0.2倍孔隙体积时,停止注入CO2,关闭注入端阀门,闷井12 h。
4)打开夹持器注入端,以同一压降梯度衰竭开发,直至压力降至大气压力,记录产出油和气量,并对吞吐后的岩心进行T2谱扫描,第一轮吞吐完成,然后再重复步骤3)—4),开始下一轮吞吐,累计吞吐3次。
1.5 试验结果
6块试验岩心经过3轮CO2吞吐,每轮吞吐采收率及累计吞吐采收率见表2。
表 2 试验岩心CO2吞吐采收率Table 2. CO2 huff and puff recovery of experimental cores岩心编号 吞吐采收率,% 累计吞吐
采收率,%第一轮 第二轮 第三轮 1# 20.6 8.8 2.4 31.8 2# 11.4 2.8 1.4 15.6 3# 22.4 11.6 4.3 38.3 4# 16.2 6.7 2.2 25.1 5# 25.8 14.1 4.7 44.6 6# 19.6 8.4 3.2 31.2 2. 裂缝对CO2吞吐效果的影响
2.1 裂缝对相同渗透率岩心采收率的影响
对比1#和2#岩心每轮吞吐采收率(见表2)可知,当无裂缝作用时,2#岩心第一轮吞吐采收率为11.4%,虽然后续2轮吞吐采收率分别为2.8%和1.4%,但从提高采收率幅度看,后续2次吞吐的采收率很低,可以认为有效吞吐次数为1次[14];当有裂缝作用时,相比于2#岩心,1#岩心第一轮吞吐采收率提高幅度80.7%,第二轮吞吐采收率提高幅度214.3%,有效吞吐次数增至2次。以上研究表明,岩心渗透率相当时,裂缝不但能够提高有效吞吐次数,还能提高每轮吞吐采收率;裂缝能够有效提高吞吐初期(前2轮)采收率,但对后期(第三轮)吞吐采收率影响较小。
2.2 裂缝对不同渗透率岩心采收率的影响
为了评价裂缝对不同渗透率岩心吞吐效果的影响,分别对比了不同渗透率条件下裂缝对CO2吞吐采收率的影响及有/无裂缝作用下不同渗透率岩心的吞吐采收率。由表2可知,有裂缝作用的1#、3#、5#岩心的累计吞吐采收率比无裂缝作用的2#、4#、6#岩心的累计吞吐采收率分别提高了103.4%、52.6%和42.9%。以上研究表明,随着渗透率增大,累计吞吐采收率不断升高。这说明虽然裂缝能够提高每轮吞吐采收率及累计吞吐采收率,但随着岩心渗透率增大,裂缝对吞吐采收率的影响程度不断下降。
此外,渗透率对裂缝岩心的吞吐采收率影响较小,而对无裂缝岩心的吞吐采收率影响较大。特别是前2轮吞吐中,在无裂缝作用下,当渗透率由0.044 0 mD(4#岩心)降至0.005 2 mD(2#岩心)时,第一轮吞吐采收率的降低幅度为35.8%,第二轮吞吐采收率的降低幅度达58.2%;相反,在有裂缝作用下时,当渗透率由0.027 0 mD(3#岩心)降至0.007 5 mD(1#岩心)时,第一轮和第二轮吞吐采收率的下降幅度分别仅为8.0%和24.1%。说明裂缝能够减小渗透率降低对CO2吞吐采收率的影响,也就是说压裂能够有效改善页岩油储层CO2吞吐的开发效果。
2.3 裂缝对采油速度的影响
第一轮降压衰竭中1#、2#岩心采油速度及采出程度的关系曲线见图4。从图4可以看出,有裂缝的1#岩心在放喷初期采油速度快速上升,而后采油速度呈阶梯状下降,当衰竭时间接近15 min时,采出程度基本保持不变;无裂缝的2#岩心在放喷初期采油速度缓慢上升,且最大采油速度仅为有裂缝作用下采油速度的一半。这主要是因为无裂缝作用时,放喷泄油面仅在采出端面,随着出口端压力的降低,CO2携带原油从基质孔隙中排出,孔隙距离采出端面越远,原油排出需要克服的阻力越大,导致很多远端孔隙中的原油随CO2运移时“半途而止”;裂缝的存在大大增加了基质的泄油面积,降低了基质中原油进入出口端的阻力,提高了放喷初期和中期的采油速度。
3. 微观孔隙动用特征分析
在低磁场强度中,可以通过测量岩石孔隙中含氢流体的弛豫信号振幅和弛豫速率来建立T2谱分布,研究岩石的微观孔隙结构特征[15-16]。岩石孔隙中饱和流体的弛豫时间与孔隙半径成正比,而振幅强度则代表了某一孔径孔隙中流体的饱和量[17],因此,可以通过分析CO2吞吐前后的T2谱分布变化来定量评价不同孔径孔隙的原油动用特征。
3.1 裂缝作用下的基质动用特征
3.1.1 T2谱分布特征
根据不同孔径孔隙中原油产生的横向弛豫时间与孔隙半径成正比这一原理[16-17],结合T2谱曲线中波峰与波谷对应的弛豫时间,可以识别出岩心在饱和油状态下的基质与裂缝。1#、2#岩心饱和油及每轮吞吐后的T2谱分布结果如图5所示。1#岩心包含裂缝,0.1 ms<T2≤105 ms时对应的区间为基质,105 ms<T2≤1 100 ms时对应的区间为裂缝(见图5(a))。2#岩心中由于不存在裂缝,因此弛豫时间T2在105~1 100 ms之间既不存在信号振幅,也不存在波峰(见图5(b))。此外,为了便于后续研究不同孔径孔隙中原油的动用特征,进一步将基质孔隙大小划分为2类,即小孔隙(0.1 ms<T2≤10 ms)和大孔隙(10 ms<T2≤105 ms)。
由图5可知,1#和2#岩心饱和油状态下T2谱分布中小孔隙和大孔隙对应的T2谱形态基本相似。小孔隙对应波峰明显高于大孔隙对应波峰,说明2块岩心孔隙结构相似,小孔隙发育程度高,而大孔隙发育程度较差,且大孔隙、小孔隙之间连通性较差。随着CO2吞吐次数增多,2块岩心的小孔隙和大孔隙对应的振幅均下降,但下降幅度逐渐减小,且大孔隙对应振幅的下降幅度大于小孔隙,说明CO2吞吐过程中大、小孔隙均有动用,且大孔隙的动用程度高于小孔隙。而1#岩心的小孔隙和大孔隙对应振幅的下降幅度均明显大于2#岩心,说明裂缝不但提高了大孔隙中原油的动用程度,还提高了小孔隙中原油的动用程度。
3.1.2 不同孔径孔隙采出程度对比
为进一步定量评价小孔隙和大孔隙中原油的动用程度,根据岩心饱和油后某一弛豫时间范围内信号振幅之和与其对应孔径孔隙中的总饱和油量成正比的特征[18],计算出吞吐前后不同孔径孔隙中的原油采出程度:
ER=∑TmaxTminw0−∑TmaxTminwh∑TmaxTminw0×100% (1) 式中:ER为孔隙原油采出程度;Tmin,Tmax分别为T2谱分布中某一孔径孔隙对应的最小和最大驰豫时间,ms;w0为初始饱和油状态下T2谱的信号振幅;wh为某轮吞吐后T2谱的信号振幅。
1#和2#岩心每轮吞吐后不同孔隙的原油采出程度如图6所示。从图6可以看出,无论有无裂缝的影响,CO2吞吐过程中大孔隙原油采出程度一直大于小孔隙。而裂缝对大孔隙、小孔隙采出程度的影响会随着吞吐次数的增加而逐渐变化(见表3)。
表 3 不同吞吐轮次中裂缝对大、小孔隙采出程度提高幅度的影响Table 3. Influence on the increase rate in degree of reserve recovery from macropores and micropores contributed by fractures in each huff and puff cycle吞吐轮次 孔隙类型 采出程度,% 采出程度提高
幅度,%1#岩心 2#岩心 第一轮 小孔隙 6.8 4.4 54.5 大孔隙 37.5 24.6 52.4 第二轮 小孔隙 4.3 1.8 138.9 大孔隙 19.6 13.8 42.0 第三轮 小孔隙 1.8 0.6 200.0 大孔隙 10.5 8.7 20.7 从表3可知,第一轮吞吐中,有裂缝作用下大孔隙原油采出程度为37.5%,比无裂缝作用下大孔隙采出程度提高了近52.5%,虽然小孔隙采出程度较低,但相比于2#岩心,裂缝仍然能够将小孔隙采出程度提高近54.6%;第二轮吞吐中,裂缝提高大孔隙采出程度幅度下降至42.0%,而小孔隙采出程度提高幅度达到138.9%;第三轮吞吐中,裂缝提高大孔隙采出程度幅度下降至20.7%,而小孔隙采出程度提高幅度达到200.0%。说明随着CO2吞吐次数的增加,裂缝对大孔隙中原油采出程度的影响在减弱,而对小孔隙中原油采出程度的影响在增强。
3.2 不同渗透率岩心基质动用特征
3.2.1 T2谱分布特征
根据3.1节的识别方法,分别识别出3#和5#岩心的基质(小孔隙和大孔隙)及裂缝。2块岩心饱和油及每轮吞吐后的T2谱分布结果如图7所示。
从图7可以看出,3#和5#岩心在饱和油状态下的T2谱分布与1#岩心存在差异,3#岩心中小孔隙对应波峰的峰值与大孔隙对应波峰的峰值基本相当,说明该岩心物性较好,大孔隙、小孔隙发育程度较高且相当,大孔隙、小孔隙之间连通性较好。5#岩心中小孔隙对应波峰的峰值明显小于大孔隙对应波峰的峰值,说明该岩心大孔隙发育程度高,小孔隙发育程度较差,大、小孔隙之间连通性好,原油主要赋存于大孔隙之中[19-20]。结合图5(a)可知,随着岩心渗透率的增大,岩心孔隙结构参数变好,T2谱分布中大孔隙对应峰值及面积不断增大,小孔隙对应峰值及面积不断降低。在CO2吞吐过程中,随着吞吐次数增多,3#和5#岩心大孔隙、小孔隙对应振幅的变化规律与1#岩心相似,但由于3#和5#岩心大孔隙发育程度高,其对应振幅的下降幅度更大,可以看出采收率的提高主要来源于大孔隙。从T2谱分布的变化可知,对于储层物性较好的岩心,大孔隙仍然是后续挖潜的主要方向。
3.2.2 不同孔径孔隙采出程度对比
含有裂缝的3块岩心大孔隙、小孔隙采出程度关系曲线如图8所示。从图8可以看出,随着渗透率降低,小孔隙采出程度不断下降;但随着吞吐次数增加,3块岩心的小孔隙采出程度的差异减小。这说明高渗透率岩心由于大孔隙发育程度高,孔喉连通性好,CO2在进入大孔隙后,通过扩散和抽提作用能够动用与其连通的小孔隙,导致CO2波及体积大,小孔隙采出程度也相对较高。随着吞吐次数增加,由于小孔隙中原油的动用主要依靠缓慢的抽提和传质作用,导致小孔隙采出程度快速下降;而大孔隙采出程度随吞吐次数增多而快速下降,这主要是因为大孔隙原油的动用主要依靠原油体积膨胀和降压时的溶解气驱作用,这一过程快速且主要发生在吞吐初期,后续吞吐主要动用的是已波及区域内大孔隙中的剩余油,由于剩余油组分加重,导致后续吞吐中大孔隙的采出程度快速下降。
4. 结 论
1)裂缝能够显著提高CO2吞吐初期采油速度和采收率,但随着岩心渗透率升高和吞吐次数增多,裂缝对吞吐采收率的影响程度逐渐降低。另外,裂缝还能降低渗透率对CO2吞吐采收率的影响。
2)不管有无裂缝存在,CO2吞吐过程中大孔隙的动用程度高于小孔隙,但随着吞吐次数增多,裂缝对大孔隙原油采出程度的提高幅度不断减小,而对小孔隙原油采出程度的提高幅度不断增大。
3)大孔隙中原油主要靠CO2体积膨胀和溶解气驱方式动用,速度快且产量高;而小孔隙中原油主要靠抽提和传质方式动用,过程缓慢且产量低,导致后续轮次吞吐中CO2波及体积减小,动用效果变差,产量降低速度快。
-
[1] 吴霞.蒸汽辅助重力泄油技术研究进展[J].特种油气藏,2007,14(1):7-10,18. WU Xia.Progress of steam assisted gravity drainage[J].Special Oil Gas Reservoirs,2007,14(1):7-10,18. [2] 褒建军.国外水平井稠油热力开采技术[J].石油钻探技术,1996,24(4):44-47. BAO Jianjun.The technology of thermal production with horizontal well abroad[J].Petroleum Drilling Techniques,1996,24(4):44-47. [3] 杨明合,张文波,李积风,等.浅层稠油SAGD水平井与直井联合钻完井技术[J].石油钻探技术,2011,39(5):23-26. YANG Minghe,ZHANG Wenbo,LI Jifeng,et al.Shallow heavy oil reservoir SAGD horizontal well and vertical well joint operation drilling completion technology[J].Petroleum Drilling Techniques,2011,39(5):23-26. [4] 刘尚奇,包连纯,马德胜.辽河油田超稠油油藏开采方式研究[J].石油勘探与开发,1999,26(4):80-81. LIU Shangqi,BAO Lianchun,MA Desheng.The study on the exploitation way of ultra heavy oil reservoir in Liaohe Oilfield[J].Petroleum Exploration and Development,1999,26(4):80-81. [5] 岳宗杰,李勇,于海军.辽河油田杜84区块超稠油油藏水平井钻井技术[J].石油钻探技术,2005,33(6):15-18. YUE Zongjie,LI Yong,YU Haijun.Horizontal drilling technologies for exploiting ultra-thick reservoir in Du-84 Block,Liaohe Oilfield[J].Petroleum Drilling Techniques,2005,33(6):15-18. [6] 张辉登,李春兰,黄世军,等.直平组合SAGD注采井网及参数影响研究[J].断块油气田,2015,22(1):94-97. ZHANG Huideng,LI Chunlan,HUANG Shijun,et al.Effects of injection-production pattern and parameter on SAGD using combination of vertical and horizontal wells[J].Fault-Block Oil Gas Field,2015,22(1):94-97. [7] 武毅,张丽萍,李晓漫,等.超稠油SAGD开发蒸汽腔形成及扩展规律研究[J].特种油气藏,2007,14(6):40-43. WU Yi,ZHANG Liping,LI Xiaoman,et al.Study of steam chamber growth and expansion in SAGD for ultra heavy oil[J].Special Oil Gas Reservoirs,2007,14(6):40-43. [8] 杨立强,陈月明,王宏远,等.超稠油直井-水平井组合蒸汽辅助重力泄油物理和数值模拟[J].中国石油大学学报(自然科学版),2007,31(4):64-69. YANG Liqiang,CHEN Yueming,WANG Hongyuan,et al.Physical and numerical simulation of steam assisted gravity drainage with vertical and horizontal well combination in extra heavy oil reservoir[J].Journal of China University of Petroleum(Edition of Natural Science),2007,31(4):64-69. [9] 张孝燕.馆陶SAGD下步动态调整[J].内蒙古石油化工,2012,38(5):49-51. ZHANG Xiaoyan.The next dynamic adjustment of Guantao SAGD[J].Inner Mongulia Petrochemical Industry,2012,38(5):49-51. [10] 刘尚奇,王晓春,高永荣,等.超稠油油藏直井与水平井组合SAGD技术研究[J].石油勘探与开发,2007,34(2):234-238. LIU Shangqi,WANG Xiaochun,GAO Yongrong,et al.SAGD process with the combination of vertical and horizontal wells in super-heavy oil reservoir[J].Petroleum Exploration and Development,2007,34(2):234-238. [11] 郭二鹏,刘尚奇,王晓春,等.直井与水平井组合的蒸汽辅助重力泄油产量预测[J].断块油气田,2008,15(3):71-74. GUO Erpeng,LIU Shangqi,WANG Xiaochun,et al.Method of production forecast for SAGD with combination of vertical and horizontal wells[J].Fault-Block Oil and Gas Field,2008,15(3):71-74. [12] YANG G,Bulter R M.Effects of reservoir heterogeneities on heavy oil recovery by steam-assisted gravity drainage[J].The Journal of Canadian Petroleum Technology,1992,31(8):37-43.
[13] 赵田,高亚丽,乙广燕,等.水平井蒸汽辅助重力驱数学模型的建立及求解方法[J].大庆石油地质与开发,2005,24(4):40-41. ZHAO Tian,GAO Yali,YI Guangyan,et al.Establishment of mathematical model for horizontal well SAG flooding and its solution method[J].Petroleum Geology Oilfield Development in Daqing,2005,24(4):40-41. [14] BUTLER R M.Gravity drainage to horizontal wells[J].Journal of Canadian Petroleum Technology,1992,31(4):31-37.
[15] 吴向红,叶继根,马远乐.水平井蒸汽辅助重力驱油藏模拟方法[J].计算物理,2002,19(6):549-552. WU Xianghong,YE Jigen,MA Yuanle.SAGD numerical simulation with horizontal wells[J].Chinese Journal of Computational Physics,2002,19(6):549-552. [16] BULTER R M.Thermal recovery of oil and bitumen[M].Upper Saddle River:Prentice Hall,1991:233-237.
[17] CHOW L,BUTLER R M.Numerical simulation of the steam-assisted gravity drainage process(SAGD)[J].Journal of Canadian Petroleum Technology,1996,35(6):55-62.
[18] 尤洪军,王宏远,刘洪涛,等.温度观察井系统在超稠油SAGD开发中的应用[J].油气地质与采收率,2008,15(3):99-101. YOU Hongjun,WANG Hongyuan,LIU Hongtao,et al.Application of temperature observation wells system in the SAGD[J].Petroleum Geology and Recovery Efficiency,2008,15(3):99-101. -
期刊类型引用(14)
1. 李斌会,邓森,张江,曹胜,郭天娇,徐全,霍迎冬. 古龙页岩油高温高压注CO_2驱动用效果. 大庆石油地质与开发. 2024(01): 42-51 . 百度学术
2. 姚红生,高玉巧,郑永旺,邱伟生,龚月,钱洋慧. CO_2快速吞吐提高页岩油采收率现场试验. 天然气工业. 2024(03): 10-19 . 百度学术
3. 李阳,曹小朋,赵清民,刘祖鹏,薛兆杰,蒋龙. 济阳坳陷陆相断陷盆地页岩油开发的几点思考. 石油钻探技术. 2024(04): 1-7 . 本站查看
4. 吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术. 石油钻探技术. 2024(04): 87-93 . 本站查看
5. 李邦国,侯家鵾,雷兆丰,张博,王斌,陈江. 超临界CO_2萃取页岩油效果评价及影响因素分析. 石油钻探技术. 2024(04): 94-103 . 本站查看
6. 陈洪才,王彪,李太伟,张鑫,朱杰,戴志鹏,孙敬,李思辰. 在线核磁监测法优化裂缝性页岩油藏赋能渗吸吞吐工艺. 石油钻采工艺. 2024(02): 228-237 . 百度学术
7. 马先林,刘朕之,湛杰,潘晓甜,李成德. 基于物理信息神经网络的CO_2羽流分布预测方法. 石油钻探技术. 2024(05): 69-75 . 本站查看
8. 黄千慧,李海波,杨正明,邢济麟,陈波,李杰,薛伟,姚兰兰,杜猛,孟焕. 页岩(致密)油藏注CO_2吞吐作用距离实验. 大庆石油地质与开发. 2024(06): 128-135 . 百度学术
9. 张岩,冯海顺,翟勇,周晓梅,刘东青,王坤. 低渗透稠油油藏CO_2压驱提高采收率机理及规律研究. 石油钻探技术. 2024(06): 97-106 . 本站查看
10. 张磊,于海洋,黄涛,唐慧婷,孙灵辉,曾华柯,汪洋. CO_2吞吐提高其埋存率及页岩油采收率的影响因素. 华南师范大学学报(自然科学版). 2024(05): 16-26 . 百度学术
11. 刘雨奇,陈哲伟,雷启鸿,徐振华,罗二辉,雷征东,熊维亮,何右安. 庆城页岩油后期补能注伴生气吞吐注采参数优化. 科学技术与工程. 2023(12): 5033-5040 . 百度学术
12. 饶志华,邓成辉,马倩芸,武广瑷,武治强,程小伟. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响. 钻井液与完井液. 2023(04): 495-501 . 百度学术
13. 张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 . 本站查看
14. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 2420
- HTML全文浏览量: 94
- PDF下载量: 3060
- 被引次数: 18