QIN Jianyu, LI Bo, RAO Zhihua, et al. Research and application of key cementing technologies for an ultra-deep large-displacement well in Enping 21-4 Oilfield, Eastern South China Sea [J]. Petroleum Drilling Techniques, 2025, 53(2):1−8. DOI: 10.11911/syztjs.2025026
Citation: QIN Jianyu, LI Bo, RAO Zhihua, et al. Research and application of key cementing technologies for an ultra-deep large-displacement well in Enping 21-4 Oilfield, Eastern South China Sea [J]. Petroleum Drilling Techniques, 2025, 53(2):1−8. DOI: 10.11911/syztjs.2025026

Research and Application of Key Cementing Technologies for an Ultra-Deep Large-Displacement Well in Enping 21-4 Oilfield, Eastern South China Sea

More Information
  • Received Date: January 20, 2025
  • Revised Date: March 22, 2025
  • Available Online: April 02, 2025
  • he Enping 21-4 ultra-deep and large-displacement well, operated by CNOOC, represents the deepest ϕ244.55 mm casing run in China, with a casing depth of 8,125 meters, a barehole length of 5,125 meters, and a horizontal displacement of 5,093.17 meters in the barehole section. Faced with extreme depth and displacement challenges, along with three actual drilling-induced loss zones encountered during construction that heightened risks of cementing loss and compromised cement quality assurance, the project team developed and implemented four key technologies to ensure successful casing deployment and cementing operations. Specifically, a dedicated casing accessory wear evaluation system was developed for in-hole accessory performance assessment and optimization, providing technical guarantees for safe casing running; circulation friction precision calculation technology enabled real-time pressure control and slurry structure optimization during operations, effectively avoiding cementing loss risks; a dual-suspended slurry system combining an ultra-low-density low-friction lead slurry with a high-solid content low-viscosity tail slurry ensured rheological compatibility of wellbore fluids, significantly improving cement displacement efficiency; and temperature-pressure coupled simulation accurately evaluated bottomhole circulating temperature, offering rational temperature parameters for cement slurry formulation. Through the integrated application of these technologies, the Enping 21-4 well achieved smooth cementing operations despite its extreme conditions. This case demonstrates that systematic technological innovation can effectively manage ultra-deep large-displacement well challenges, offering valuable reference for offshore oilfield development in deepwater and ultra-deep environments with high displacement and complex geological features. The successful implementation not only confirms CNOOC's technical leadership in global deepwater drilling engineering for frontier reservoirs but also underscores its capability to deliver engineering solutions for such extreme wells, reinforcing its position in international industry leadership.

  • [1]
    吴静,丁琳,张晓钊,等. 珠江口盆地恩平凹陷海相三角洲岩性圈闭勘探的关键技术[J]. 长江大学学报(自然科学版),2022,19(1):44–53. doi: 10.3969/j.issn.1673-1409.2022.01.005

    WU Jing, DING Lin, ZHANG Xiaozhao, et al. Key technologies of lithologic trap exploration in marine delta of enping sag in Pearl River Mouth Basin[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 44–53. doi: 10.3969/j.issn.1673-1409.2022.01.005
    [2]
    杨昆鹏,李鹏晓,敖康伟,等. 富满油田长封固段低摩阻超低密度水泥浆固井技术[J]. 石油钻探技术,2023,51(6):64–70. doi: 10.11911/syztjs.2023060

    YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of fuman oilfield[J]. Petroleum Drilling Techniques, 2023, 51(6): 64–70. doi: 10.11911/syztjs.2023060
    [3]
    王鼎,万向臣,杨晨. 低摩阻耐压防漏低密度水泥浆固井技术[J]. 钻井液与完井液,2022,39(5):608–614. doi: 10.12358/j.issn.1001-5620.2022.05.012

    WANG Ding, WAN Xiangchen, YANG Chen. Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608–614. doi: 10.12358/j.issn.1001-5620.2022.05.012
    [4]
    薛亮,陈博,樊林栋,等. 钻井液静切力对水平段固井顶替界面影响规律研究[J]. 钻采工艺,2017,40(3):26–29. doi: 10.3969/J.ISSN.1006-768X.2017.03.09

    XUE Liang, CHEN Bo, FAN Lindong, et al. Study on effects of drilling fluid gel strength on slurry displacement interface during horizontal cementing[J]. Drilling & Production Technology, 2017, 40(3): 26–29. doi: 10.3969/J.ISSN.1006-768X.2017.03.09
    [5]
    TARDY P M J, BITTLESTON S H. A model for annular displacements of wellbore completion fluids involving casing movement[J]. Journal of Petroleum Science and Engineering, 2015, 126: 105–123. doi: 10.1016/j.petrol.2014.12.018
    [6]
    江文龙. 深水无隔水管钻井水力计算模型研究[D]. 北京:中国石油大学(北京),2019.

    JIANG Wenlong. Research on the hydraulic calculation models in deep water riserless drilling[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [7]
    HUANG Wenjun, GAO Deli, LIU Yinghua. Mechanical model and optimal design method of tubular strings with connectors constrained in extended-reach and horizontal wells[J]. Journal of Petroleum Science and Engineering, 2018, 166: 948–961. doi: 10.1016/j.petrol.2018.01.072
    [8]
    冯义,任凯,刘俊田,等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺,2024,47(3):33–41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05

    FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling and Production Technology, 2024, 47(3): 33–41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05
    [9]
    池明,刘涛,薛承文,等. 高温高压深井套管磨损预测与剩余强度校核研究[J]. 钻采工艺,2021,44(6):1–6. doi: 10.3969/J.ISSN.1006-768X.2021.06.001

    CHI Ming, LIU Tao, XUE Chengwen, et al. Research on casing wear prediction and residual strength check in high pressure high temperature deep wells[J]. Drilling & Production Technology, 2021, 44(6): 1–6. doi: 10.3969/J.ISSN.1006-768X.2021.06.001
    [10]
    赵军,黄文君,高德利. 大位移井钻井管柱作业极限实时预测方法[J]. 石油钻采工艺,2023,45(5):523–531.

    ZHAO Jun, HUANG Wenjun, GAO Deli. Real-time prediction method of pipe string operation limits in drilling extended-reach wells[J]. Oil Drilling & Production Technology, 2023, 45(5): 523–531.
    [11]
    钱浩东,张帆,张治发,等. 钻具屈曲影响下的管柱摩阻扭矩分析[J]. 钻采工艺,2023,46(3):22–28. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.04

    QIAN Haodong, ZHANG Fan, ZHANG Zhifa, et al. Analysis of pipe string friction and torque under the influence of drilling tool buckling[J]. Drilling & Production Technology, 2023, 46(3): 22–28. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.04
    [12]
    肖洋,宗庆伟,李榕,等. 漂浮下套管技术在川西长裸眼水平井的试验[J]. 钻采工艺,2022,45(5):34–38.

    XIAO Yang, ZONG Qingwei, LI Rong, et al. Experiment of floating casing technology in long open-hole horizontal well in western Sichuan[J]. Drilling & Production Technology, 2022, 45(5): 34–38.
    [13]
    屈建省,徐同台,徐璧华,等. 油气井注水泥理论与应用[M]. 2版. 北京:石油工业出版社,2022:550-554.

    QU Jiansheng, XU Tongtai, XU Bihua, et al. Theory and application of oil and gas well cementing[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022: 550-554.
    [14]
    田军政. 平湖油田高温大位移井尾管固井技术实践[J]. 钻探工程,2024,51(增刊1):378-383.

    TIAN Junzheng. Practice of liner cementing technology for high temperature and large displacement wells in Pinghu Oilfield[J]. Drilling Engineering, 2024, 51(supplement 1): 378-383.
    [15]
    王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(2): 103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010
    [16]
    YANG Hongwei, LI Jun, LIU Gonghui, et al. Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling[J]. Energy, 2019, 179: 138–153. doi: 10.1016/j.energy.2019.04.214
    [17]
    MAO Liangjie, ZHANG Zheng. Transient temperature prediction model of horizontal wells during drilling shale gas and geothermal energy[J]. Journal of Petroleum Science and Engineering, 2018, 169: 610–622. doi: 10.1016/j.petrol.2018.05.069
    [18]
    KHAN N U, MAY R. A generalized mathematical model to predict transient bottomhole temperature during drilling operation[J]. Journal of Petroleum Science and Engineering, 2016, 147: 435–450. doi: 10.1016/j.petrol.2016.08.017
    [19]
    赵琥. 南海东部大位移井固井技术浅析[J]. 长江大学学报(自然科学版),2011,8(7):38–40.

    ZHAO Hu. Brief analysis of cementing technology for extended-reach wells in the eastern South China Sea[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(7): 38–40.
  • Related Articles

    [1]MA Jihe, GENG Tie, SONG Xiaowei, DI Mingli, YANG Bo. Drilling Fluid Technology for Ultra-Deep Displacement Wells in Enping 21-4 Oilfield in the eastern South China Sea[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025025
    [2]Guo Yongbin, Zuo Kun, Deng Chenghui, Li Jingjing, Zhang Kai, Lei Hong. Key Technologies for Drilling and Completion of Ultra-deep Extended Reach Horizontal Well in Enping Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025021
    [3]ZHANG Junbin, YANG Zhidi, QIN Shili, CAO Bobo, WANG Zhiwei, ZHANG Yongtao. Research and Application of Continuous POD Dual ESP Technology in Offshore Extended Reach Wells[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025028
    [4]YANG Kunpeng, LI Pengxiao, AO Kangwei, ZHANG Tianyi, XIA Yuanbo, HOU Wei. Ultra-Low Density and Low-Friction Cement Slurry Cementing Technologies in Long Sealing Sections of Fuman Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(6): 64-70. DOI: 10.11911/syztjs.2023060
    [5]LI Yan, HU Zhiqiang, XUE Yuzhi, LIANG Wenlong, TANG Wenquan, NIU Chengcheng. Key Drilling Technologies of Well Bin 4 under the Daily Rate System Management Mode[J]. Petroleum Drilling Techniques, 2022, 50(3): 34-38. DOI: 10.11911/syztjs.2021133
    [6]LI Jianshan. Challenges and Countermeasures of Well Cementing Operations for Horizontal Wells in the Jinghe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 19-23. DOI: 10.11911/syztjs.201706004
    [7]LIU Yun, WANG Tao, YU Xiaolong, NIU Meng. Cementation Technology for Low-Pressure Formations Susceptible to Lost Circulation in Western Area of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(4): 53-58. DOI: 10.11911/syztjs.201704009
    [8]Sui Mei. Technical Difficulties and Countermeasures in Cementing of Deep Exploration Wells in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 73-79. DOI: 10.3969/j.issn.1001-0890.2013.03.014
    [9]Su Feng, Zhang Weiguo, Li Zemin, Chang Yuanjiang, Chen Guoming. Application of Underwater GPS Positioning Technique in Wellhead Positioning of Liuhua 4-1 Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 40-45. DOI: 10.3969/j.issn.1001-0890.2013.03.008
    [10]Zhang Yu, Zhang Guo, Xu Jiang, Gao Wei, Liu Guichuan. Application of Novel Polyamine Drilling Fluid in Mudstone Section of Well DuH 4[J]. Petroleum Drilling Techniques, 2012, 40(6): 33-37. DOI: 10.3969/j.issn.1001-0890.2012.06.007
  • Cited by

    Periodical cited type(1)

    1. 王彪,李军,杨宏伟,詹家豪,张更,龙震宇. 基于工程参数变化趋势的溢流早期智能检测方法. 石油钻探技术. 2024(05): 145-153 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (7) PDF downloads (4) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return