ZHANG Xuemin, ZHANG Xueru, LI Houbu, et al. Simulation study on mechanical behavior of a nonmetallic composite coiled tubing with cable laying under tension load [J]. Petroleum Drilling Techniques, 2025, 53(1):94−101. DOI: 10.11911/syztjs.2025003
Citation: ZHANG Xuemin, ZHANG Xueru, LI Houbu, et al. Simulation study on mechanical behavior of a nonmetallic composite coiled tubing with cable laying under tension load [J]. Petroleum Drilling Techniques, 2025, 53(1):94−101. DOI: 10.11911/syztjs.2025003

Simulation Study on Mechanical Behavior of a Nonmetallic Composite Coiled Tubing with Cable Laying under Tension Load

More Information
  • Received Date: December 27, 2023
  • Revised Date: January 06, 2025
  • Available Online: January 20, 2025
  • Nonmetallic composite coiled tubing with cable laying is subjected to tension load due to its self-weight in the process of frequent lifting and lowering of wells for oil extraction, and clarifying the mechanical behavior of the pipe under this load can provide guidance for the safe service of the pipe. A three-dimensional numerical model of nonmetallic composite coiled tubing with cable laying was constructed by finite element software, and the mechanical behavior of the pipe under tension load and the mechanical response of each structural layer were analyzed. The influence of cable laying process parameters, such as cable winding and distribution angles, on the mechanical properties of the pipe was explored. The results indicate that under tension load, the stresses in all structural layers of the pipe with cable laying exhibit a spiral distribution because of cable winding. When the pipe is stretched to failure, it undergoes three stages: elastic deformation, transition stage, and yield deformation. Meanwhile, the cables are in a state of small plastic uniform deformation. Reducing the cable winding angle can enhance the elastic modulus and axial load-bearing capacity of the pipe with cable laying. However, it may cause the pipe to enter into the transition stage prematurely and then yield in advance. The cable distribution angle has a minimal impact on the mechanical properties of the pipe. Therefore, when this type of pipe is manufactured, special emphasis should be placed on the cable winding angle, as this parameter is highly correlated with the mechanical properties of the pipe under tension loads.

  • [1]
    刘耀民,孙文盛,鲜林云. 敷缆连续管在油田电潜泵采油技术中的应用[J]. 焊管,2022,45(3):61–64.

    LIU Yaomin, SUN Wensheng, XIAN Linyun. Application of coiled tubing with cables in oilfield electric submersible pump oil production technology[J]. Welded Pipe and Tube, 2022, 45(3): 61–64.
    [2]
    李昂,杨万有,郑春峰,等. 海上油田采油技术创新实践及发展方向[J]. 石油钻探技术,2024,52(6):75–85.

    LI Ang, YANG Wanyou, ZHENG Chunfeng, et al. Innovation practice and prospect of oil production technologies in offshore oil-fields[J]. Petroleum Drilling Techniques, 2024, 52(6): 75–85.
    [3]
    李厚补,张学敏,马相阳,等. 井下用非金属复合材料连续管研究进展[J]. 石油管材与仪器,2021,7(2):9–14.

    LI Houbu, ZHANG Xuemin, MA Xiangyang, et al. Research progress on non-metallic coiled composite pipes[J]. Petroleum Tubular Goods & Instruments, 2021, 7(2): 9–14.
    [4]
    CHEN Wei, XIONG Haichao, BAI Yong. Failure behavior analysis of steel strip–reinforced flexible pipe under combined tension and internal pressure[J]. Journal of Thermoplastic Composite Materials, 2020, 33(6): 727–753. doi: 10.1177/0892705718811405
    [5]
    祖世强,熊巍,张宝辉,等. 敷缆连续油管无杆采油试验及分析[J]. 内蒙古石油化工,2019,45(9):10–12.

    ZU Shiqiang, XIONG Wei, ZHANG Baohui, et al. Test and analysis of rodless oil recovery of coiled tubing[J]. Inner Mongolia Petrochemical Industry, 2019, 45(9): 10–12.
    [6]
    侯伟,刘传友,浮昀,等. 复合连续敷缆管采油技术探索实践[C]//第十七届宁夏青年科学家论坛石油石化专题论坛论文集. 银川:宁夏回族自治区科学技术协会,2021:197-199.

    HOU Wei, LIU Chuanyou, FU Yun, et al. Exploration and practice of composite continuous cable pipe oil production technology[C]//Proceedings of the 17th Ningxia Young Scientists Forum Petroleum and Petrochemical Special Forum. Yinchuan: Ningxia Association for Science and Technology, 2021: 197-199.
    [7]
    WANG Baodong, LIU Xiaoben, ZHANG Hong, et al. A combined experimental and numerical simulation approach for burst pressure analysis of fiber-reinforced thermoplastic pipes[J]. Ocean Engineering, 2021, 236: 109517. doi: 10.1016/j.oceaneng.2021.109517
    [8]
    WANG Yangyang, LOU Min, TONG Bing, et al. Mechanical properties study of reinforced thermoplastic pipes under a tensile load[J]. China Ocean Engineering, 2020, 34(6): 806–816. doi: 10.1007/s13344-020-0073-x
    [9]
    KAMP G P, BETTS M. Development of a power and data transmission thermoplastic composite coiled tubing for electric drilling[R]. SPE 60730, 2000.
    [10]
    李帅,袁文才,张友军,等. 智能非金属敷缆连续管的夹持力学性能研究[J]. 化学工程与装备,2022(12):28–30.

    LI Shuai, YUAN Wencai, ZHANG Youjun, et al. Study on the clamping mechanical properties of non-metallic intelligent coiled tubing[J]. Chemical Engineering & Equipment, 2022(12): 28–30.
    [11]
    宿振国. 敷缆复合材料连续管结构设计与性能评测研究[D]. 青岛:中国石油大学(华东),2014.

    SU Zhenguo. Study on structural design and performance evaluation of composite coiled tubing with cables[D]. Qingdao: China University of Petroleum(East China), 2014.
    [12]
    丁楠,李厚补,古兴瑾,等. 非金属智能连续管拉伸层力学特性研究[J]. 石油机械,2020,48(11):119–125.

    DING Nan, LI Houbu, GU Xingjin, et al. Study on the mechanical properties of the tensile layer of non-metallic intelligent coiled tubing[J]. China Petroleum Machinery, 2020, 48(11): 119–125.
    [13]
    夏和萍. 热塑性复合材料海洋柔性管内压承载力研究[D]. 青岛:中国石油大学(华东),2021.

    XIA Heping. On internal pressure capacity of thermoplastic composite pipes[D]. Qingdao: China University of Petroleum(East China), 2021.
    [14]
    KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515–529. doi: 10.1002/nme.1620140405
    [15]
    白勇,张尹,杨红刚. 纤维绳缠绕增强复合管拉伸有限元分析[J]. 低温建筑技术,2015,37(1):61–63.

    BAI Yong, ZHANG Yin, YANG Honggang. Finite element analysis of fiber rope winding reinforced composite pipe tensile[J]. Low Temperature Architecture Technology, 2015, 37(1): 61–63.
    [16]
    张学敏,周腾,李厚补,等. 涤纶纤维增强聚乙烯复合管承压性能模拟[J]. 工程塑料应用,2020,48(8):118–122.

    ZHANG Xuemin, ZHOU Teng, LI Houbu, et al. Simulation of pressure-bearing performance of polyester fiber reinforced polyethylene composite pipes[J]. Engineering Plastics Application, 2020, 48(8): 118–122.
    [17]
    YUE Qianjin, LU Qingzhen, YAN Jun, et al. Tension behavior prediction of flexible pipelines in shallow water[J]. Ocean Engineering, 2013, 58: 201–207. doi: 10.1016/j.oceaneng.2012.11.002
    [18]
    周腾. 纤维增强塑料复合管关键承载性能仿真模拟[D]. 西安:长安大学,2021.

    ZHOU Teng. Simulation of the key bearing performance of fiber reinforced plastic composite pipes[D]. Xi’an: Chang’an University, 2021.
    [19]
    张尹. 纤维缠绕增强复合管在轴对称荷载下的力学行为研究[D]. 杭州:浙江大学,2015.

    ZHANG Yin. Investigation on mechanisms of filament-wound fiber-reinforced composite pipe under axisymmetric loads[D]. Hangzhou: Zhejiang University, 2015.
    [20]
    张杰,梁博丰. 复杂载荷下钢带缠绕增强复合管力学特性[J]. 复合材料学报,2021,38(1):246–254.

    ZHANG Jie, LIANG Bofeng. Mechanical properties of reinforced composite pipe wound with steel strip under complex loads[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 246–254.
    [21]
    邹宵. 海洋复合软管结构设计的关键力学问题研究[D]. 大连:大连理工大学,2021.

    ZOU Xiao. Research on key mechanical problems of marine composite hose structure design[D]. Dalian: Dalian University of Technology, 2021.
    [22]
    黄婷. 钢丝缠绕增强塑料复合管的力学性能分析与研究[D]. 杭州:浙江大学,2014.

    HUANG Ting. Study on mechanisms of plastic pipe reinforced by helically cross-winding steel wire[D]. Hangzhou: Zhejiang University, 2014.
    [23]
    刘婷. 钢带缠绕复合管力学性能及可靠性分析[D]. 杭州:浙江大学,2018.

    LIU Ting. Mechanical behaviors and reliability analysis of steel strip reinforced flexible pipes[D]. Hangzhou: Zhejiang University, 2018.
    [24]
    XU Yuxin, BAI Yong, FANG Pan, et al. Structural analysis of fibreglass reinforced bonded flexible pipe subjected to tension[J]. Ships and Offshore Structures, 2019, 14(7): 777–787. doi: 10.1080/17445302.2018.1564534
    [25]
    冯德华,綦耀光,余焱群. 海洋纤维增强复合柔性管拉伸性能[J]. 中国石油大学学报(自然科学版),2021,45(4):146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018

    FENG Dehua, QI Yaoguang, YU Yanqun. Tensile properties of marine fiber reinforced composite flexible pipes[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018
    [26]
    陈伟. 涉内压荷载下钢带缠绕增强复合管力学性能分析[D]. 杭州:浙江大学,2018.

    CHEN Wei. Research on the mechanical properties of steel strip reinforced flexible pipe under internal pressure related load[D]. Hangzhou: Zhejiang University, 2018.
  • Cited by

    Periodical cited type(15)

    1. 张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 .
    2. 余金柱,王嘉鑫,李建辉,达引朋,任佳伟,赵争光,兰倩,王春蕾. 基于微震事件时空分布特征的连续裂缝网络建模方法研究——以致密砂岩储层重复压裂效果评价为例. 地球物理学进展. 2024(06): 2275-2285 .
    3. 张腾换,张涛,王同丁,唐凡,王燕,张煜. 高含水油井双向调堵剂性能评价及工艺参数优化. 应用化工. 2024(11): 2528-2532 .
    4. 段鹏辉,李向平,白晓虎,雷冠宇,黄婷,董奇. 裂缝性水淹油井梯次充填深部堵水延长措施有效期方法. 石油钻采工艺. 2024(04): 466-478 .
    5. 高明,王学洲,李涛,杨智. 油田压裂活动中低渗透技术的应用. 中国石油和化工标准与质量. 2023(06): 173-175 .
    6. 孙凤林,魏子扬,朱立国,吴清辉,张艳辉,左清泉. 高强度无机复合高温堵剂体系研究. 精细与专用化学品. 2023(04): 24-26 .
    7. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 .
    8. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 .
    9. 张亚楠,张荣军,张超,林鹏,丁乾申. 新型延迟交联堵水剂体系的制备及性能评价. 应用化工. 2023(07): 2080-2083 .
    10. 蒲堡萍,魏建光,周晓峰,尚德淼. 基于机器学习的低渗透砂岩聚合物驱采收率预测. 科学技术与工程. 2023(28): 12045-12056 .
    11. 赵文景,王敬,钱其豪,于春磊,张民,刘慧卿,黄义涛. 非均质油藏水驱优势渗流通道演化规律. 断块油气田. 2023(05): 847-857 .
    12. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    13. 余金柱. 低渗透油田压裂技术及发展趋势. 中国石油和化工标准与质量. 2023(21): 175-177 .
    14. 张天涯. 高含水率油藏人工强边水驱技术研究. 石油化工应用. 2022(10): 13-18 .
    15. 马虹,段斌. VOCs尾气光催化治理技术研究进展与文献计量学分析. 石油化工应用. 2022(10): 10-12+18 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (82) PDF downloads (18) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return