Citation: | TAN Peng, CHEN Zhaowei, ZHAO Qing, et al. Mechanism and control method of fault activation by multi-cluster fracturing of shale gas [J]. Petroleum Drilling Techniques, 2024, 52(6):107−116. DOI: 10.11911/syztjs.2024120 |
The activation of faults, fracture zones, or weak bedding surfaces (collectively referred to as faults) induced by the large-scale multi-cluster fracturing in shale gas sections in Sichuan often leads to engineering problems such as casing deformation or frac-hits. However, the mechanisms of fault activation during multi-cluster fracturing and the corresponding effective control methods remain unclear. To address this issue, a statistical analysis of multi-source field data was conducted to explore the correlation between multi-cluster fracturing and fault activation. Additionally, a model was proposed to describe fault activation induced by the non-equilibrium propagation of multi-cluster hydraulic fractures. In the process of competitive propagation of multi-cluster hydraulic fractures, when the main fractures of one or a few clusters were connected with faults, they gradually developed into dominant channels, while other clusters were inhibited or even stopped, showing strong non-equilibrium propagation characteristics. The fault gradually developed into a major fluid channel, and with the continuous injection of fluid, the internal pore pressure increased and became activated after critical stress conditions were reached. On this basis, geomechanic principles were applied, and it was further concluded that the fault activation was internally caused by faults at critical stress state with high angle development and externally caused by high operation pressure. Finally, to preventing fracturing fluid from entering the fault, this paper proposed the concept of balanced fracturing to control fault activation. In addition, some new fracturing technologies were developed, including “short segments with few clusters”, “one blockage with one drainage”, and “fracturing cluster by cluster”, etc. This achievement could provide guidance for addressing casing deformation and frac-hits of shale gas wells in Sichuan.
[1] |
赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
|
[2] |
雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166–172. doi: 10.11698/PED.2022.01.15
LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166–172. doi: 10.11698/PED.2022.01.15
|
[3] |
沈骋,谢军,赵金洲,等. 提升川南地区深层页岩气储层压裂缝网改造效果的全生命周期对策[J]. 天然气工业,2021,41(1):169–177.
SHEN Cheng, XIE Jun, ZHAO Jinzhou, et al. Whole-life cycle countermeasures to improve the stimulation effect of network fracturing in deep shale gas reservoirs of the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 169–177.
|
[4] |
谭鹏,金衍,陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报,2022,7(1):61–70. doi: 10.3969/j.issn.2096-1693.2022.01.006
TAN Peng, JIN Yan, CHEN Gang. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan basin[J]. Petroleum Science Bulletin, 2022, 7(1): 61–70. doi: 10.3969/j.issn.2096-1693.2022.01.006
|
[5] |
陈朝伟,项德贵,张丰收,等. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略[J]. 石油科学通报,2019,4(4):364–377.
CHEN Chaowei, XIANG Degui, ZHANG Fengshou, et al. Fault slip and casing deformation caused by hydraulic fracturing in Changning-Weiyuan Blocks, Sichuan: Mechanism and prevention strategy[J]. Petroleum Science Bulletin, 2019, 4(4): 364–377.
|
[6] |
郭建春,路千里,何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业,2022,42(8):148–161. doi: 10.3787/j.issn.1000-0976.2022.08.012
GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148–161. doi: 10.3787/j.issn.1000-0976.2022.08.012
|
[7] |
GUPTA I, RAI C, DEVEGOWDA D, et al. Fracture Hits in unconventional reservoirs: A critical review[J]. SPE Journal, 2021, 26(1): 412–434. doi: 10.2118/203839-PA
|
[8] |
李跃纲,宋毅,黎俊峰,等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业,2023,43(5):34–46. doi: 10.3787/j.issn.1000-0976.2023.05.004
LI Yuegang, SONG Yi, LI Junfeng, et al. Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry, 2023, 43(5): 34–46. doi: 10.3787/j.issn.1000-0976.2023.05.004
|
[9] |
张宏峰. 页岩油水平井压裂后变形套管液压整形技术[J]. 石油钻探技术,2023,51(5):173–178. doi: 10.11911/syztjs.2023055
ZHANG Hongfeng. Hydraulic shaping technology of deformed casing after fracturing in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 173–178. doi: 10.11911/syztjs.2023055
|
[10] |
韩玲玲,李熙喆,刘照义,等. 川南泸州深层页岩气井套变主控因素与防控对策[J]. 石油勘探与开发,2023,50(4):853–861. doi: 10.11698/PED.20230032
HAN Lingling, LI Xizhe, LIU Zhaoyi, et al. Influencing factors and prevention measures of casing deformation in deep shale gas wells in Luzhou block, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(4): 853–861. doi: 10.11698/PED.20230032
|
[11] |
陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术[J]. 中国石油勘探,2022,27(1):135–141. doi: 10.3969/j.issn.1672-7703.2022.01.013
CHEN Chaowei, XIANG Degui. Integrated prevention and control technology of casing deformation in shale gas development well in Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 135–141. doi: 10.3969/j.issn.1672-7703.2022.01.013
|
[12] |
RANDOLPH-FLAGG J, REBER J E. Effect of grain size and grain size distribution on slip dynamics: An experimental analysis[J]. Tectonophysics, 2020, 774: 228288. doi: 10.1016/j.tecto.2019.228288
|
[13] |
RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes[J]. Nature Communications, 2017, 8(1): 15991. doi: 10.1038/ncomms15991
|
[14] |
HONG Tiancong, MARONE C. Effects of normal stress perturbations on the frictional properties of simulated faults[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(3): Q03012.
|
[15] |
DI TORO G, ARETUSINI S, CORNELIO C, et al. Friction during earthquakes: 25 years of experimental studies[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(5): 052032. doi: 10.1088/1755-1315/861/5/052032
|
[16] |
TULLIS T E, WEEKS J D. Constitutive behavior and stability of frictional sliding of granite[J]. Pure and Applied Geophysics, 1986, 124(3): 383–414. doi: 10.1007/BF00877209
|
[17] |
ALMAKARI M, CHAURIS H, PASSELÈGUE F, et al. Fault’s hydraulic diffusivity enhancement during injection induced fault reactivation: Application of pore pressure diffusion inversions to laboratory injection experiments[J]. Geophysical Journal International, 2020, 223(3): 2117–2132. doi: 10.1093/gji/ggaa446
|
[18] |
JI Yinlin, WU Wei, ZHAO Zhihong. Unloading-induced rock fracture activation and maximum seismic moment prediction[J]. Engineering Geology, 2019, 262: 105352. doi: 10.1016/j.enggeo.2019.105352
|
[19] |
DIETERICH J H. Constitutive properties of faults with simulated gouge[M]//CARTER N L, FRIEDMAN M, LOGAN J M, et al. Mechanical Behavior of Crustal Rocks: The Handin Volume. Washington D C : American Geophysical Union, 1981: 103-120.
|
[20] |
ZHANG Fengshou, AN Mengke, ZHANG Lianyang, et al. The role of mineral composition on the frictional and stability properties of powdered reservoir rocks[J]. Journal of Geophysical Research. Solid Earth, 2019, 124(2): 1480–1497. doi: 10.1029/2018JB016174
|
[21] |
ZHAO Chengxing, LIU Jianfeng, LYU Cheng, et al. Study on the shear-slip process and characteristics of fracture in shale[J]. Engineering Geology, 2023, 319: 107097. doi: 10.1016/j.enggeo.2023.107097
|
[22] |
AN Mengke, ZHANG Fengshou, ELSWORTH D, et al. Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019885. doi: 10.1029/2020JB019885
|
[23] |
刘奎. 页岩气水平井压裂井筒完整性研究[D]. 北京:中国石油大学(北京),2019.
LIU Kui. Research on well integrity of horizontal shale gas well with hydraulic fracturing[D]. Beijing: China University of Petroleum(Beijing), 2019.
|
[24] |
ZHANG Fengshou, YIN Zirui, CHEN Zhaowei, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing: Microseismic analysis and geomechanical modeling[J]. SPE Journal, 2020, 25(2): 692–711. doi: 10.2118/199883-PA
|
[25] |
刘伟,陶长洲,万有余,等. 致密油储层水平井体积压裂套管变形失效机理数值模拟研究[J]. 石油科学通报,2017,2(4):466–477.
LIU Wei, TAO Changzhou, WAN Youyu, et al. Numerical analysis of casing deformation during massive hydraulic fracturing of horizontal wells in a tight-oil reservoir[J]. Petroleum Science Bulletin, 2017, 2(4): 466–477.
|
[26] |
路千里,刘壮,郭建春,等. 水力压裂致套管剪切变形机理及套变量计算模型[J]. 石油勘探与开发,2021,48(2):394–401. doi: 10.11698/PED.2021.02.16
LU Qianli, LIU Zhuang, GUO Jianchun, et al. Hydraulic fracturing induced casing shear deformation and a prediction model of casing deformation[J]. Petroleum Exploration and Development, 2021, 48(2): 394–401. doi: 10.11698/PED.2021.02.16
|
[27] |
EYRE T S, EATON D W, GARAGASH D I, et al. The role of aseismic slip in hydraulic fracturing-induced seismicity[J]. Science Advances, 2019, 5(8): eaav7172. doi: 10.1126/sciadv.aav7172
|
[28] |
陈朝伟,石林,项德贵. 长宁—威远页岩气示范区套管变形机理及对策[J]. 天然气工业,2016,36(11):70–75. doi: 10.3787/j.issn.1000-0976.2016.11.009
CHEN Chaowei, SHI Lin, XIANG Degui. Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J]. Natural Gas Industry, 2016, 36(11): 70–75. doi: 10.3787/j.issn.1000-0976.2016.11.009
|
[29] |
臧传贞,姜汉桥,石善志,等. 基于射孔成像监测的多簇裂缝均匀起裂程度分析:以准噶尔盆地玛湖凹陷致密砾岩为例[J]. 石油勘探与开发,2022,49(2):394–402. doi: 10.11698/PED.2022.02.18
ZANG Chuanzhen, JIANG Hanqiao, SHI Shanzhi, et al. An analysis of the uniformity of multi-fracture initiation based on downhole video imaging technology: a case study of Mahu tight conglomerate in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 394–402. doi: 10.11698/PED.2022.02.18
|
[30] |
吴宝成,王佳,张景臣,等. 管外光纤监测压裂单簇裂缝延伸强度现场试验[J]. 钻采工艺,2022,45(2):84–88. doi: 10.3969/J.ISSN.1006-768X.2022.02.15
WU Baocheng, WANG Jia, ZHANG Jingchen, et al. Field test of single cluster fracture extension strength monitoring by optical fiber outside casing[J]. Drilling & Production Technology, 2022, 45(2): 84–88. doi: 10.3969/J.ISSN.1006-768X.2022.02.15
|
[31] |
蒋廷学. 水平井分段压裂多簇裂缝均衡起裂与延伸控制方法研究[J]. 重庆科技学院学报(自然科学版),2022,24(2):1–8. doi: 10.3969/j.issn.1673-1980.2022.02.002
JIANG Tingxue. Study of control method for multi-cluster fractures uniform crack and propagation in horizontal well staged fracturing[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2022, 24(2): 1–8. doi: 10.3969/j.issn.1673-1980.2022.02.002
|
[32] |
陈朝伟. 四川页岩气套管变形机理和防控技术[M]. 北京:科学出版社,2022:23-24.
CHEN Chaowei. Mechanism and prevention and control technology of shale gas casing deformation in Sichuan[M]. Beijing: Science Press, 2022: 23-24.
|
[33] |
陈朝伟,曹虎,周小金,等. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性[J]. 天然气勘探与开发,2020,43(4):123–130.
CHEN Chaowei, CAO Hu, ZHOU Xiaojin, et al. Correlation between casing deformation and fracture zones in Changning shale gas block, Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(4): 123–130.
|
[34] |
曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073
ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
|
[35] |
赵志恒,郑有成,范宇,等. 页岩储集层水平井段内多簇压裂技术应用现状及认识[J]. 新疆石油地质,2020,41(4):499–504.
ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi-cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(4): 499–504.
|
[36] |
庞惠文,艾白布·阿不力米提,解赤栋,等. 新型自激脉冲射流装置实验与现场应用[J]. 石油学报,2022,43(2):293–306. doi: 10.7623/syxb202202011
PANG Huiwen, ABULIMITI Aibaibu, XIE Chidong, et al. Experiment and field application of a new self-excitedpulsed jet device[J]. Acta Petrolei Sinica, 2022, 43(2): 293–306. doi: 10.7623/syxb202202011
|
[37] |
庞德新,韦志超,郭新维,等. 围压工况下附壁脉冲射流喷嘴性能研究[J]. 石油机械,2020,48(5):16–21.
PANG Dexin, WEI Zhichao, GUO Xinwei, et al. Research on performance of wall-attached pulse jet nozzle at confining pressure[J]. China Petroleum Machinery, 2020, 48(5): 16–21.
|
1. |
孟晋,刘得军,翟颖,李洋,刘思彤,彭娜. 基于电磁方法的水力压裂裂缝探测技术研究进展. 石油地球物理勘探. 2023(06): 1508-1521 .
![]() | |
2. |
王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 .
![]() | |
3. |
吴世伟,刘得军,赵阳,王旭,冯雪,李洋. 层状介质水力裂缝电磁响应的有限元正演模拟. 石油钻探技术. 2022(02): 132-138 .
![]() | |
4. |
胡华宗. T-R综合物探技术在防空洞积水探测中的应用研究. 能源与环保. 2022(08): 86-91 .
![]() |