Citation: | LYU Zhenhu, ZHANG Yupeng, SHI Shanzhi, et al. Downhole behavior characteristics of horizontal well volume fracturing in high-speed erosion casing [J]. Petroleum Drilling Techniques, 2024, 52(6):86−96. DOI: 10.11911/syztjs.2024072 |
In order to provide a theoretical basis for optimizing horizontal well volume fracturing design and reducing the blockage and sticking risks during running fracturing tools, a self-developed large-scale field experiment simulation system for perforation erosion was utilized to conduct experiments on the casing and fracturing materials under the erosion of high-speed sand-carrying fluid. Based on the experimental data, a dynamic model was established to describe the erosion morphology of the perforation inner wall. The experimental results show that as the sand concentration in the sand-carrying fluid increases, the maximum diameter of the inner wall of the perforation and the pumping pressure drop gradually increase after erosion. The thickness of the proppant attached on the inner wall of the casing gradually increases from the heel to the toe of the wellbore, which can reduce the inner diameter of the lower string by 35 mm. As the sand concentration gradually increases, the adhesion amount gradually increases at the heel but gradually decreases at the toe of the casing. Moreover, as the sand concentration in the sand-carrying fluid increases, the degree of proppant fragmentation after erosion gradually becomes stronger, with the debris ratio going up. The reduction amplitude of fracturing fluid viscosity after erosion goes up first and then goes down, and the maximum reduction of fracturing fluid viscosity can reach 52%. A numerical model of proppant migration in the casing under high-speed erosion condition was established, and the law of proppant particle migration in the casing was analyzed. In addition, the dynamic model derived from the experiment was verified, which describes the erosion morphology of the inner wall of the perforation. The research results provide a basis for optimizing construction parameters of horizontal well fracturing and reducing the blockage and sticking risks during running fracturing tools.
[1] |
李建民,吴宝成,赵海燕,等. 玛湖致密砾岩油藏水平井体积压裂技术适应性分析[J]. 中国石油勘探,2019,24(2):250–259.
LI Jianmin, WU Baocheng, ZHAO Haiyan, et al. Adaptability of horizontal well volume fracturing to tight conglomerate reservoirs in Mahu Oilfield[J]. China Petroleum Exploration, 2019, 24(2): 250–259.
|
[2] |
李国欣,覃建华,鲜成钢,等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J]. 石油勘探与开发,2020,47(6):1185–1197.
LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: a case study of the Mahu Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1185–1197.
|
[3] |
蔺敬旗,孟鑫,李晴晴,等. 砾岩储层电成像测井表征方法及应用:以准噶尔盆地玛湖凹陷砾岩油藏为例[J]. 石油钻探技术,2022,50(2):126–131.
LIN Jingqi, MENG Xin, LI Qingqing, et al. Characterization method and application of electrical imaging logging in conglomerate reservoir: a case study in Mahu Sag of Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 126–131.
|
[4] |
黄洪林,李军,高热雨,等. 湖凹陷砾岩油藏水平井钻井提速难点与对策:以金龙2井区为例[J]. 石油钻采工艺,2022,44(2):153–160.
HUANG Honglin, LI Jun, GAO Reyu, et al. Difficulties and countermeasures for ROP improvement of horizontal drilling in the conglomerateoil reservoir of the Mahu sag: a case study of the Jinlong-2 well district[J]. Oil Drilling & Production Technolog, 2022, 44(2): 153–160.
|
[5] |
项远铠,张谷畅,承宁,等. 深层砂砾岩储层整体压裂矿场试验[J/OL]. 断块油气田,2024:1-13[2024-07-11]. http://kns.cnki.net/kcms/detail/41.1219.te.20240426.0922.002.html.
XIANG Yuankai, ZHANG Guchang, CHENG Ning, et al. Field test on the integral fracturing in the deep sandy conglomerate reservoirs[J/OL]. Fault-Block Oil & Gas Field, 2024: 1-13[2024-07-11]. http://kns.cnki.net/kcms/detail/41.1219.te.20240426.0922.002.html.
|
[6] |
吕振虎,张传新,陈小璐,等. 砂砾岩尺寸及密度对压裂缝网扩展的影响[J]. 断块油气田,2024,31(2):337–344.
LYU Zhenhu, ZHANG Chuanxin, CHEN Xiaolu, et al. Effect of size and density of conglomerate on fracturing network propaga-tion[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 337–344.
|
[7] |
陈小璐,吕振虎,路宗羽,等. 玛湖深层致密砾岩油藏体积压裂关键技术研究与应用[J/OL]. 断块油气田,2024:1-12[2024-07-11]. http://kns.cnki.net/kcms/detail/41.1219.TE.20240227.1549.004.html.
CHEN Xiaolu, LYU Zhenhu, LU Zongyu, et al. Research and application of key techniques for volume fracturing of deep dense conglomerate reservoir in Mahu Oilfield[J/OL]. Fault-Block Oil & Gas Field, 2024: 1-12[2024-07-11]. http://kns.cnki.net/kcms/detail/41.1219.TE.20240227.1549.004.html.
|
[8] |
臧传贞,姜汉桥,石善志,等. 基于射孔成像监测的多簇裂缝均匀起裂程度分析:以准噶尔盆地玛湖凹陷致密砾岩为例[J]. 石油勘探与开发,2022,49(2):394–402. doi: 10.1016/S1876-3804(22)60033-8
ZANG Chuanzhen, JIANG Hanqiao, SHI Shanzhi, et al. An analysis of the uniformity of multi-fracture initiation based on downhole video imaging technology: a case study of Mahu tight conglomerate in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 394–402. doi: 10.1016/S1876-3804(22)60033-8
|
[9] |
ROBINSON S, LITTLEFORD T, LUU T, et al. Acoustic imaging of perforation erosion in hydraulically fractured wells for optimizing cluster efficiency[R]. SPE 199718, 2020.
|
[10] |
CRUMP J B, CONWAY M W. Effects of perforation-entry friction on bottomhole treating analysis[J]. Journal of Petroleum Technology, 1988, 40(8): 1041–1048. doi: 10.2118/15474-PA
|
[11] |
EL-RABBA A M, SHAH S N, LORD D L. New perforation pressure-loss correlations for limited-entry fracturing treatments[J]. SPE Production & Facilities, 1999, 14(1): 63–71.
|
[12] |
WILLINGHAM J D, TAN H C, NORMAN L R. Perforation friction pressure of fracturing fluid slurries[R]. SPE 25891, 1993.
|
[13] |
葛铭,葛荣存,张贤,等. 换热管束冲蚀磨损的实验研究[J]. 锅炉技术,2017,48(4):1–5.
GE Ming, GE Rongcun, ZHANG Xian, et al. Experimental research on erosion of heat exchanger bundles[J]. Boiler Technology, 2017, 48(4): 1–5.
|
[14] |
魏辽,韩峰,陈涛,等. 套管固井滑套冲蚀磨损模拟分析与试验研究[J]. 石油钻探技术,2014,42(3):108–111.
WEI Liao, HAN Feng, CHEN Tao, et al. Analysis and experimental research on erosion of cementing sliding sleeve[J]. Petroleum Drilling Techniques, 2014, 42(3): 108–111.
|
[15] |
STOKELY C L. Acoustics-based flow monitoring during hydraulic fracturing[R]. SPE 179151, 2016.
|
[16] |
王国荣,钱权,杨昌海,等. 模拟套管固井滑套工况下冲蚀实验方案设计[J]. 西南石油大学学报(自然科学版),2017,39(1):169–176.
WANG Guorong, QIAN Quan, YANG Changhai, et al. Schematic design of erosion test on cementing sliding sleeves in fracturing operations[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(1): 169–176.
|
[17] |
WU Baocheng, ZHOU Fujian, WANG Mingxing, et al. Field-scale experimental study on the perforation erosion in horizontal wellbore under real fracturing conditions[J]. Processes, 2022, 10(6): 1058. doi: 10.3390/pr10061058
|
[18] |
LONG Gongbo, LIU Songxia, XU Guanshui, et al. Modeling of perforation erosion for hydraulic fracturing applications[R]. SPE 174959, 2015.
|
[19] |
LONG Gongbo, XU Guanshui. The effects of perforation erosion on practical hydraulic-fracturing applications[J]. SPE Journal, 2017, 22(2): 645–659. doi: 10.2118/185173-PA
|
[20] |
LONG Gongbo, LIU Songxia, XU Guanshui, et al. A perforation-erosion model for hydraulic-fracturing applications[J]. SPE Production & Operations, 2018, 33(4): 770–783.
|
[21] |
SUZUKI M, INABA K, YAMAMOTO M. Numerical simulation of sand erosion in a square-section 90-degree bend[J]. Journal of Fluid Science and Technology, 2008, 3(7): 868–880. doi: 10.1299/jfst.3.868
|
[22] |
ZENG Dezhi, ZHANG Enbo, DING Yanyan, et al. Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method[J]. Powder Technology, 2018, 329: 115–128. doi: 10.1016/j.powtec.2018.01.056
|
[23] |
张恩搏,曾德智,李双贵,等. 高压高产气井应急试采过程中采气树抗冲蚀性能分析[J]. 表面技术,2018,47(3):183–190.
ZHANG Enbo, ZENG Dezhi, LI Shuanggui, et al. Erosion resistance of gas production tree during emergent trial production of high-pressure and high-output gas wells[J]. Surface Technology, 2018, 47(3): 183–190.
|
[24] |
樊艳芳,李少安,曾德智,等. 应急放喷工况井下管柱冲蚀行为研究[J]. 特种油气藏,2020,27(1):169–174.
FAN Yanfang, LI Shaoan, ZENG Dezhi, et al. String erosion of well with blowout operation[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 169–174.
|
[25] |
陈东波,张恩搏,李双贵,等. 应急放喷工况下钻井四通的耐冲蚀性能[J]. 腐蚀与防护,2018,39(9):698–703.
CHEN Dongbo, ZHANG Enbo, LI Shuanggui, et al. Analyses of anti-erosion performance of drilling cross under emergent discharge conditions[J]. Corrosion and Protection, 2018, 39(9): 698–703.
|
[26] |
THAKER J, BANERJEE J. Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe[J]. Journal of Petroleum Science and Engineering, 2016, 145: 298–320. doi: 10.1016/j.petrol.2016.05.006
|
[27] |
刘雁蜀,秦龙,王治国,等. 套管压裂过程中射孔孔眼冲蚀数值模拟[J]. 石油机械,2015,43(9):66–69.
LIU Yanshu, QIN Long, WANG Zhiguo, et al. Numerical simulation of perforation hole erosion during cased hole fracturing[J]. China Petroleum Machinery, 2015, 43(9): 66–69.
|
[28] |
曾德智,张思松,田刚,等. 加砂压裂过程中套管孔眼抗冲蚀性能分析[J]. 表面技术,2022,51(6):204–213.
ZENG Dezhi, ZHANG Sisong, TIAN Gang, et al. Analysis of erosion resistance of casing perforation in the process of sand fracturing[J]. Surface Technology, 2022, 51(6): 204–213.
|
[29] |
WU Baocheng, ZHANG Sisong, LI Jianmin, et al. Simulation of the erosion of casing and perforation under staged sand fracturing conditions in horizontal sections[J]. Journal of Hydrodynamics, 2022, 34(4): 725–743. doi: 10.1007/s42241-022-0050-3
|
[30] |
MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993: AIAA-93-2906.
|
[31] |
MENTER F R, SCHÜTZE J, KURBATSKII K A, et al. Scale-resolving simulation techniques in industrial CFD[C]//6th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2011: AIAA 2011-3474.
|
1. |
刘清友,赵建国,方世纪. 全液压连续油管牵引器工作机理研究. 钻采工艺. 2025(01): 216-227 .
![]() | |
2. |
曾凡辉,胡大淦,郭建春,张柟乔,郑彬涛,白小嵩,陈掌星. 基于钻录井资料的页岩气水平井分段多簇差异化压裂参数智能优化. 天然气工业. 2025(02): 84-94 .
![]() | |
3. |
唐弘程. 海上调整井优快钻井技术管理研究. 中国石油和化工标准与质量. 2024(08): 177-179 .
![]() | |
4. |
宋先知,姚学喆,许争鸣,周蒙蒙,王庆辰. 超深井控温钻井隔热涂层参数影响机制研究. 石油钻探技术. 2024(02): 126-135 .
![]() | |
5. |
陈建国,汪伟,都伟超. 渝西大安区块超深层页岩气水平井钻井提速关键技术研究. 钻探工程. 2024(04): 154-162 .
![]() | |
6. |
冯秀鲁. 油田深层油藏钻井提速技术研究及应用. 西部探矿工程. 2024(08): 68-70+74 .
![]() | |
7. |
程童,黎波,张中,黄兰,张庆,卢海兵,李晓晨,陈小龙,巩建平. 渝西区块深层页岩气井钻头优选研究. 四川地质学报. 2024(S1): 15-20 .
![]() | |
8. |
Yaoran Wei,Yongcun Feng,Zhenlai Tan,Tianyu Yang,Shuang Yan,Xiaorong Li,Jingen Deng. Simultaneously improving ROP and maintaining wellbore stability in shale gas well:A case study of Luzhou shale gas reservoirs. Rock Mechanics Bulletin. 2024(03): 91-103 .
![]() |
|
9. |
欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 .
![]() | |
10. |
赵文彬,宋文豪. 永川黄202区块页岩气水平井钻井提速对策分析. 天然气勘探与开发. 2023(02): 127-134 .
![]() | |
11. |
温景东. 页岩气开采安全管理现状及改进策略. 石化技术. 2023(07): 218-220 .
![]() | |
12. |
张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 .
![]() | |
13. |
倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 .
![]() | |
14. |
罗双平,刘青,韩巍,谭宇龙,周焱. 基于井筒工程数据的钻井提速评价分析方法——以高石梯—磨溪区块为例. 天然气技术与经济. 2023(06): 21-28 .
![]() | |
15. |
朱明明,孙欢,孙艳,丛成,侍德益,贾继国. 陇东致密油区域恶性出水漏层堵漏技术. 石油钻探技术. 2023(06): 50-56 .
![]() |