DIAO Binbin, GAO Deli, LIU Zhe, et al. Well depth measured with MWD error correction and calculation of borehole position uncertainty [J]. Petroleum Drilling Techniques,2024, 52(2):181-186. DOI: 10.11911/syztjs.2024043
Citation: DIAO Binbin, GAO Deli, LIU Zhe, et al. Well depth measured with MWD error correction and calculation of borehole position uncertainty [J]. Petroleum Drilling Techniques,2024, 52(2):181-186. DOI: 10.11911/syztjs.2024043

Well Depth Measured with MWD Error Correction and Calculation of Borehole Position Uncertainty

More Information
  • Received Date: December 19, 2023
  • Revised Date: March 02, 2024
  • Available Online: April 05, 2024
  • When drilling deep and ultra-deep wells, the high downhole temperature and the large tensile force on the drilling tools in the well result in a large well depth error measured with measurement with drilling (MWD). Therefore, the influence of downhole temperature, thermal expansion coefficient, axial force of drilling tools, and specifications of drilling tools in different well depths was considered, and the drilling tools in the well were segmented at the measurement point. According to the results of the downhole temperature measured with MWD and the force analysis of drilling tools in the well, models of thermal expansion and elastic tension correction for the well depth measured with MWD were established. In addition, the models for the calculation of the error limits of the thermal expansion correction and the elastic tension correction, as well as the calculation method of wellbore position uncertainty after correcting thermal expansion and elastic tension errors of measured well depth with MWD were given. The example calculations demonstrate that during the drilling of ultra-deep wells, the elongation of drilling tools in the well caused by thermal expansion and elastic tension can reach more than 10 m. By correcting the thermal expansion and elastic tension of the measured depth with MWD, the vertical depth errors and the size of the error ellipsoid of the measurement points can be significantly reduced. The results provide a theoretical basis for improving the accuracy of well depth measured with MWD and scientific calculation of wellbore position uncertainty.

  • [1]
    于瑞丰,刁斌斌,高德利. 考虑磁方位校正的井眼轨迹测量误差计算[J]. 石油钻探技术,2023,51(6):25–31.

    YU Ruifeng, DIAO Binbin, GAO Deli. Calculation for wellbore trajectory measurement error incorporating magnetic azimuth correction[J]. Petroleum Drilling Techniques, 2023, 51(6): 25–31.
    [2]
    孟庆威,姜天杰,刘泳敬,等. 基于有限元分析的方位角误差计算和修正[J]. 石油钻探技术,2022,50(3):66–73.

    MENG Qingwei, JIANG Tianjie, LIU Yongjing, et al. Calculation and correction of azimuth errors based on finite element analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66–73.
    [3]
    孟卓然. BHA轴向磁干扰对方位测量误差的影响:基于人工磁场模拟方法[J]. 石油学报,2020,41(8):1011–1018.

    MENG Zhuoran. Effect of BHA axial magnetic interference on the azimuth measurement error: a simulation method based on artificial magnetic field[J]. Acta Petrolei Sinica, 2020, 41(8): 1011–1018.
    [4]
    刘建光,底青云,张文秀. 基于多测点分析法的水平井高精度磁方位校正方法[J]. 地球物理学报,2019,62(7):2759–2766.

    LIU Jianguang, DI Qingyun, ZHANG Wenxiu. High precision magnetic azimuth correction of horizontal well by multi-station analysis[J]. Chinese Journal of Geophysics, 2019, 62(7): 2759–2766.
    [5]
    范光第,蒲文学,赵国山,等. 磁力随钻测斜仪轴向磁干扰校正方法[J]. 石油钻探技术,2017,45(4):121–126.

    FAN Guangdi, PU Wenxue, ZHAO Guoshan, et al. Correction methods for axial magnetic interference of the magnetic inclinometer while drilling[J]. Petroleum Drilling Techniques, 2017, 45(4): 121–126.
    [6]
    许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106.

    XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
    [7]
    WILSON H, LOFTS J C, PAGE G C, et al. Depth control: reconciliation of LWD and wireline depths, standard practice and an alternative simple but effective method[R]. SPE 89899, 2004.
    [8]
    CHIA C R, LAASTAD H, KOSTIN A, et al. A new method for improving LWD logging depth[R]. SPE 102175, 2006.
    [9]
    PEDERSEN B K, CONSTABLE M V. Operational procedures and methodology for improving LWD and wireline depth control, Kristin Field, Norwegian Sea[J]. Petrophysics, 2007, 48(2): 90–103.
    [10]
    BOLT H. A method for determining well depth: PCT/GB2018/000030[P]. 2018-08-30.
    [11]
    卿元华,李秀彬. 钻具深度与测井深度误差的成因探讨[J]. 西部探矿工程,2016,28(6):25–28.

    QING Yuanhua, LI Xiubin. Discussion on the cause of the error of drilling depth and logging depth[J]. West-China Exploration Engineering, 2016, 28(6): 25–28.
    [12]
    郭骁,李思洋,李红星,等. 井深误差对井眼轨迹不确定性影响及校正[J]. 天然气与石油,2020,38(3):79–84.

    GUO Xiao, LI Siyang, LI Hongxing, et al. The impact of well depth error on wellbore trajectory uncertainties and error correction[J]. Natural Gas and Oil, 2020, 38(3): 79–84.
    [13]
    ISCWSA. Introduction to wellbore positioning[M/OL]. Inverness: University of the Highlands and Islands, 2012[2024-02-04]. https://www.iscwsa.net/media/files/page/f1c1e97e/introduction-to-wellbore-positioning-ebook-v9-10-2017.pdf.
    [14]
    刘修善. 井眼轨迹不确定性表征方法[J]. 石油勘探与开发,2019,46(2):391–396.

    LIU Xiushan. Borehole trajectory uncertainty and its characterization[J]. Petroleum Exploration and Development, 2019, 46(2): 391–396.
    [15]
    WILLIAMSON H S. Accuracy prediction for directional MWD[R]. SPE 56702, 1999.
    [16]
    EKSETH R. Uncertainties in connection with the determination of wellbore positions[D]. Trondheim: Norwegian University of Science and Technology, 1998.
    [17]
    唐海雄,张俊斌,汪顺文,等. 高温致测试管柱伸长和受力计算分析[J]. 石油机械,2010,38(5):84–86.

    TANG Haixiong, ZHANG Junbin, WANG Shunwen, et al. Calculation and analysis of elongation and force of pipe string induced by high temperature[J]. China Petroleum Machinery, 2010, 38(5): 84–86.
    [18]
    SY/T 5435—2012 定向井轨道设计与轨迹计算[S].

    SY/T 5435—2012 Well path planning and survey calculation for directional drilling[S].
    [19]
    韩志勇. 定向钻井设计与计算[M]. 2版. 东营:中国石油大学出版社,2007:48-49.

    HAN Zhiyong. Directional drilling design and calculation[M]. 2nd ed. Dongying: China University of Petroleum Press, 2007: 48-49.
    [20]
    FULLER H Q. Physics, including human applications[M]. New York: Harper & Row, 1978: 281-284.
    [21]
    LUBINSKI A. A study of the buckling of rotary drilling strings[J]. API Drilling and Production Practice, 1950, 11(2): 178–214.
    [22]
    高德利. 油气井管柱力学与工程[M]. 东营:中国石油大学出版社,2006:80-88.

    GAO Deli. Down-hole tubular mechanics and its applications[M]. Dongying: China University of Petroleum Press, 2006: 80-88.
    [23]
    WILLIAMSON H S. Accuracy prediction for directional measurement while drilling[J]. SPE Drilling & Completion, 2000, 15(4): 221–233.
  • Related Articles

    [1]ZHANG Xuemin, ZHANG Xueru, LI Houbu, QI Guoquan, GAO Xiong. Simulation Study on Mechanical Behavior of a Nonmetallic Composite Coiled Tubing with Cable Laying under Tension Load[J]. Petroleum Drilling Techniques, 2025, 53(1): 94-101. DOI: 10.11911/syztjs.2025003
    [2]LI Gongrang, YU Lei, LIU Zhendong, LI Hui, MING Yuguang. The Evaluation and Application of Lost Circulation Control by Elastic Mesh Materials[J]. Petroleum Drilling Techniques, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008
    [3]CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111
    [4]SHU Zhiqiang, OUYANG Zhiying, YUAN Pengbin. The Mechanical Performance of V150 Drill Pipe under Combined Tension-Torsion Loading[J]. Petroleum Drilling Techniques, 2019, 47(2): 68-73. DOI: 10.11911/syztjs.2018140
    [5]HUANG Yuxin, HU Wangshui, YIN Shuai. Fracture Prediction Method for Coal-Bearing Tight Sandstone Reservoirs Based on a Dynamic Elastic Mechanics Model[J]. Petroleum Drilling Techniques, 2018, 46(5): 115-120. DOI: 10.11911/syztjs.2018082
    [6]XIONG Likun, WANG Sheng, XU Fenglin, ZHU Honglin, CHEN Qiao. Dynamic and Static Elastic Modulus Conversion for Shale in the Jiaoshiba Block, Fuling Area[J]. Petroleum Drilling Techniques, 2016, 44(5): 40-44. DOI: 10.11911/syztjs.201605007
    [7]LIU Xiuquan, LI Jiayi, REN Keren, XU Liangbin, CHANG Yuanjiang, SONG Qiang. A Calculation Method for the Top Tension of Deepwater Drilling Risers Based on Recoil Response[J]. Petroleum Drilling Techniques, 2016, 44(4): 47-51. DOI: 10.11911/syztjs.201604009
    [8]YIN Shuai, DING Wenlong, LI Ang, ZHAO Jinli, SHAN Yuming. Numerical Analysis on the Effect of Fractures on Elastic Properties of Tight Clastic Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 112-118. DOI: 10.11911/syztjs.201602019
    [9]Yin Shuai, Shan Yuming, Zhou Wen, Wang Zhe, Ding Wenlong. Application of Hoek-Brown Criterion for Tight Sandstone Elastic Parameters in Log Interpretation[J]. Petroleum Drilling Techniques, 2015, 43(1): 88-95. DOI: 10.11911/syztjs.201501015
    [10]The Relationship between PoreScale Elastic Microsphere and Formation Matching[J]. Petroleum Drilling Techniques, 2011, 39(4): 87-89. DOI: 10.3969/j.issn.1001-0890.2011.04.018
  • Cited by

    Periodical cited type(8)

    1. 刘智勤,徐加放,彭巍,徐超,于晓东. 陵水区块超深水高性能恒流变油基钻井液技术. 钻井液与完井液. 2024(02): 184-190 .
    2. 胡南丁,杨进,于辰,包苏都娜,周健一,王佳康,丁益达. 海上钻井表层导管表面摩擦力变化机理研究. 石油机械. 2022(01): 75-80 .
    3. 熊亮,谢文卫,张伟,于浩雨. 跟管钻进下套管技术在大洋钻探中的应用. 探矿工程(岩土钻掘工程). 2020(07): 16-22+35 .
    4. 王腾,何家龙,刘锦昆. 管土界面摩擦疲劳效应对深水井口导管贯入阻力的影响. 岩土工程学报. 2020(08): 1532-1539 .
    5. 邓玉明,刘正礼,赵维青,赵苏文. 南海深水钻井导管水下打桩可打性评估. 天然气与石油. 2020(06): 86-91 .
    6. 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术. 石油钻探技术. 2019(01): 13-19 . 本站查看
    7. 耿铁,邱正松,汤志川,赵欣,苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用. 石油钻探技术. 2019(03): 82-88 . 本站查看
    8. 张俊成,李忠慧,彭昊,胡尹凌,李志强. 深水环境下钻井面临的难点与解决对策. 山东化工. 2018(14): 104-107 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (169) PDF downloads (102) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return