QIN Saibo, YI Xianzhong, CAI Xingxing, et al. Development and safety research of dead line anchors for JGZ97 10 000-meter ultra-deep well drilling rig [J]. Petroleum Drilling Techniques,2024, 52(2):236-242. DOI: 10.11911/syztjs.2024036
Citation: QIN Saibo, YI Xianzhong, CAI Xingxing, et al. Development and safety research of dead line anchors for JGZ97 10 000-meter ultra-deep well drilling rig [J]. Petroleum Drilling Techniques,2024, 52(2):236-242. DOI: 10.11911/syztjs.2024036

Development and Safety Research of Dead Line Anchors for JGZ97 10 000-Meter Ultra-Deep Well Drilling Rig

More Information
  • Received Date: November 30, 2023
  • Revised Date: March 04, 2024
  • Accepted Date: April 15, 2024
  • Available Online: April 23, 2024
  • To address the safety concerns such as inadequate strength, safety margin, and structural instability of the dead line anchor rope wheel, the method of adding webs was proposed to solve existing problems of dead line anchor rope wheel according to the mechanical properties and structural characteristics of dead line anchor rope wheel for JGZ97 10 000-meter ultra-deep well drilling rig. With finite element numerical simulation, the structural properties of different different web rope wheels were analyzed, and the three-web rope wheel structure satisfied the safety criteria for drilling operations in terms of both strength and safety margin. The three-web rope wheel was therefore determined to be adopted. The maximum error between the simulated and the experimental results of the three-web rope wheel was 12.95% in the physical experiment, indicating a close alignment between simulation and the experimental results. Moreover, the linear buckling analysis showed that the critical buckling load of the three-web rope wheel under maximum dead line tension was 48.8 times higher than the actual load of the rope wheel, which meet the structural stability requirements. This research shows that the three-web rope wheel can solve the existing problems in dead line anchor rope wheels, providing support for the structural design of drilling rigs for 10 000-meter ultra-deep wells.

  • [1]
    李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
    [2]
    何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8. doi: 10.11911/syztjs.2022092

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8. doi: 10.11911/syztjs.2022092
    [3]
    雷鹏,倪红坚,王瑞和,等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术,2013,41(6):40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008
    [4]
    郑黎明,李彦霖,张洋洋,等. 智能钻机与传统钻机系统组成差异与发展分析[J]. 石油机械,2023,51(11):41–50.

    ZHENG Liming, LI Yanlin, ZHANG Yangyang, et al. System composition difference between intelligent and traditional rigs and development analysis of intelligent rig[J]. China Petroleum Machinery, 2023, 51(11): 41–50.
    [5]
    刘江涛,邹灵战,李忠明,等. 页岩油气钻机装备配套能力提升研究与认识[J]. 石油机械,2023,51(12):38–43.

    LIU Jiangtao, ZOU Lingzhan, LI Zhongming, et al. Improvement of rig equipment capability for shale oil/gas well drilling[J]. China Petroleum Machinery, 2023, 51(12): 38–43.
    [6]
    郭华,杨向前,徐国贤,等. 海洋平台连续起下钻钻机及关键设备研究[J]. 石油钻采工艺,2022,44(4):444–449.

    GUO Hua, YANG Xiangqian, XU Guoxian, et al. A novel continuous tripping offshore rig and its key equipment[J]. Oil Drilling & Production Technology, 2022, 44(4): 444–449.
    [7]
    宋树涛. 死绳固定器轴上摩擦阻力对指重表精度的影响[J]. 石油仪器,2004,18(2):19–21.

    SONG Shutao. Influence of the frictional resistance for deadline anchor axis on weight indicator accuracy[J]. Petroleum Instruments, 2004, 18(2): 19–21.
    [8]
    陆凤侠. 指重表滑轮系统和死绳固定器对测量结果的影响及校准方法研究[J]. 石油石化节能,2016,6(9):60–62.

    LU Fengxia. Effect of weight indicator pulley system and deadline anchor on measuring results and calibration method[J]. Energy Conservation in Petroleum & PetroChemical Industry, 2016, 6(9): 60–62.
    [9]
    易先中,张仕帆,周元华,等. JZG72型偏心式死绳固定器绳轮的力学特性分析[J]. 机床与液压,2022,50(23):160–165. doi: 10.3969/j.issn.1001-3881.2022.23.028

    YI Xianzhong, ZHANG Shifan, ZHOU Yuanhua, et al. Mechanical characteristics analysis of JZG72 eccentric deadline anchor sheave[J]. Machine Tool & Hydraulics, 2022, 50(23): 160–165. doi: 10.3969/j.issn.1001-3881.2022.23.028
    [10]
    侯松,明祥贵,任路,等. JZG18型死绳固定器支臂总成的力学性能分析[J]. 石油机械,2021,49(4):10–17.

    HOU Song, MING Xianggui, REN Lu, et al. Mechanical property analysis of JZG18 deadline anchor arm assembly[J]. China Petroleum Machinery, 2021, 49(4): 10–17.
    [11]
    王洪羽,王宽君,王臻魁,等. 考虑初始嵌入深度变异性的海底管道整体侧向屈曲分析[J]. 海洋工程,2023,41(5):104–115.

    WANG Hongyu, WANG Kuanjun, WANG Zhenkui, et al. Analysis of globally lateral buckling of submarine pipelines considering the variability of initial embedment[J]. The Ocean Engineering, 2023, 41(5): 104–115.
    [12]
    张国,刘宇琛,张笑闻,等. 基于响应面法的复合材料气瓶含缺陷内胆屈曲可靠性分析[J]. 计算力学学报,2023,40(2):175–180. doi: 10.7511/jslx20220424002

    ZHANG Guo, LIU Yuchen, ZHANG Xiaowen, et al. Buckling reliability analysis of liner with initial defects on composite overwrapped pressure vessel based on response surface method[J]. Chinese Journal of Computational Mechanics, 2023, 40(2): 175–180. doi: 10.7511/jslx20220424002
    [13]
    刘佳锋,向志海,薛明德. 内压与轴向拉力作用下锥壳与圆筒连接结构的屈曲分析[J]. 压力容器,2023,40(4):21–29. doi: 10.3969/j.issn.1001-4837.2023.04.004

    LIU Jiafeng, XIANG Zhihai, XUE Mingde. Buckling analysis of the cylindrical-to-conical transition junctions under internal pressure and axial tension[J]. Pressure Vessel Technology, 2023, 40(4): 21–29. doi: 10.3969/j.issn.1001-4837.2023.04.004
    [14]
    王骁峰,段毅,袁锐之. 薄壁硬壳式圆筒结构的屈曲分析[J]. 兵器装备工程学报,2018,39(7):166–170.

    WANG Xiaofeng, DUAN Yi, YUAN Ruizhi. Non-linear finite element buckling analysis to the thin wall cylinder monocoque structure[J]. Journal of Ordnance Equipment Engineering, 2018, 39(7): 166–170.
    [15]
    林绍东,任立新,李乐泉. 死绳固定器安装方式对指重表读数的影响[J]. 石油机械,2001,29(11):31–33. doi: 10.3969/j.issn.1001-4578.2001.11.012

    LIN Shaodong, REN Lixin, LI Lequan. Influence of installation mode of wireline anchor on readings of weight indicator[J]. China Petroleum Machinery, 2001, 29(11): 31–33. doi: 10.3969/j.issn.1001-4578.2001.11.012
    [16]
    胡军旺,姚引婧. JC90D型绞车滚筒强度分析[J]. 石油矿场机械,2016,45(10):25–28.

    HU Junwang, YAO Yinjing. Strength analysis of JC90D drawworks drum[J]. Oil Field Equipment, 2016, 45(10): 25–28.
    [17]
    江祺琦. 起重机多层缠绕卷筒动态受力分析及优化设计[D]. 上海:上海交通大学,2016.

    JIANG Qiqi. Dynamic force distribution and design optimization for multi-layer winding drum[D]. Shanghai: Shanghai Jiao Tong University, 2016.
    [18]
    钱融. 谈卷筒传动中欧拉公式的应用[J]. 建设机械技术与管理,2004,17(10):82–83. doi: 10.3969/j.issn.1004-0005.2004.10.024

    QIAN Rong. Application of euler formula in drum transmission[J]. Construction Machinery Technology & Management, 2004, 17(10): 82–83. doi: 10.3969/j.issn.1004-0005.2004.10.024
    [19]
    杜静,杨瑞伟,李东坡,等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报,2021,42(3):9–14.

    DU Jing, YANG Ruiwei, LI Dongpo, et al. Stability analysis of reinforced concrete tower of MW grade wind turbine[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 9–14.
    [20]
    刘鸿文. 材料力学[M]. 北京:高等教育出版社,2017:34.

    LIU Hongwen. Mechanics of materials[M]. Beijing: Higher Education Press, 2017: 34.
    [21]
    谢素明,王盛东,李涛. 考虑初始变形的煤炭漏斗车车体结构屈曲分析[J]. 大连交通大学学报,2023,44(4):31–38.

    XIE Suming, WANG Shengdong, LI Tao. Buckling analysis of coal hopper car body structure with initial deformation[J]. Journal of Dalian Jiaotong University, 2023, 44(4): 31–38.
    [22]
    郑晓霞,杨桥,韩耀昆,等. 发动机加力内锥体屈曲分析与结构改进[J]. 热能动力工程,2023,38(4):39–45.

    ZHENG Xiaoxia, YANG Qiao, HAN Yaokun, et al. Buckling analysis and structural improvement of engine afterburner inner cone[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(4): 39–45.
    [23]
    黄中华,刘喆,谢雅. 超大功率风力发电机组塔筒屈曲分析[J]. 太阳能学报,2022,43(4):304–310.

    HUANG Zhonghua, LIU Zhe, XIE Ya. Buckling analysis of large wind turbine towers[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 304–310.
    [24]
    龚正,韩松博,倪小军,等. CFETR真空室结构稳定性的有限元分析[J]. 核聚变与等离子体物理,2023,43(1):38–42.

    GONG Zheng, HAN Songbo, NI Xiaojun, et al. Structural stability analysis of CFETR vacuum vessel based on finite element method[J]. Nuclear Fusion and Plasma Physics, 2023, 43(1): 38–42.
    [25]
    张瀛,邝临源,姜露,等. 高温翅片管的长时蠕变屈曲分析及评定方法研究[J]. 原子能科学技术,2022,56(7):1356–1363.

    ZHANG Ying, KUANG Linyuan, JIANG Lu, et al. Long-term creep buckling analysis and assessment method research of finned tube at high temperature[J]. Atomic Energy Science and Technology, 2022, 56(7): 1356–1363.
    [26]
    张萌,彭泽豹,陈宇航,等. 大型薄壁钢管桩支架屈曲失稳研究[J]. 中国农村水利水电,2023(12):234–240.

    ZHANG Meng, PENG Zebao, CHEN Yuhang, et al. Research on the buckling instability of large thin-walled steel pipe pile brackets[J]. China Rural Water and Hydropower, 2023(12): 234–240.
    [27]
    肖文生,王顶立,王逢德,等. 配筋方式对自升式钻井平台悬臂梁屈曲性能影响研究[J]. 石油矿场机械,2017,46(6):26–31. doi: 10.3969/j.issn.1001-3482.2017.06.006

    XIAO Wensheng, WANG Dingli, WANG Fengde, et al. Influence of reinforcement method on the buckling behavior of jack-up cantilever[J]. Oil Field Equipment, 2017, 46(6): 26–31. doi: 10.3969/j.issn.1001-3482.2017.06.006
  • Related Articles

    [1]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [2]ZHANG Lina, REN Jianhua, HU Chunfeng. Three-Dimensional Development Characteristics and Fracture Network Interference of Atmospheric Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149-155. DOI: 10.11911/syztjs.2023090
    [3]LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
    [4]LI Chuanwu, LAN Kai, DU Xiaosong, HAN Mingtian, LIU Chunlin. Difficulties and Countermeasures in Horizontal Well Drilling for Shale Gas in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 16-21. DOI: 10.11911/syztjs.2020055
    [5]LIU Wei, HE Long, HU Daliang, LI Wensheng, JIAO Shaoqing. Key Technologies for Deep Marine Shale Gas Drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9-14. DOI: 10.11911/syztjs.2019118
    [6]HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
    [7]GAO Shuyang, DOU Ninghui, LIN Yongxue, CHAI Long, LIU Rui. A New Method for Evaluating the Characteristics of Hydration in the Longmaxi Shale Gas Reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20-26. DOI: 10.11911/syztjs.2018089
    [8]Tang Jiagui. Discussion on Shale Gas Horizontal Drilling Technology in Southern Sichuan[J]. Petroleum Drilling Techniques, 2014, 42(5): 47-51. DOI: 10.11911/syztjs.201405008
    [9]Zhou Chengxiang, Zhou Yucang, Li Shuangming, Hu Yuanyuan. Fracturing Pressure Reducing Technique for Shale Gas Well in the Southeastern Sichuan[J]. Petroleum Drilling Techniques, 2014, 42(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2014.04.008
    [10]Cao Yang, Chen Chen, Shi Xuezhi, Xiong Xindong, Qiao Zhiguo. Multi-Stage Fracturing Techniques for Open Hole Horizontal Wells in Western Sichuan Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(3): 13-17. DOI: 10.3969/j.issn.1001-0890.2012.03.003

Catalog

    Article Metrics

    Article views (123) PDF downloads (58) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return