Citation: | ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir [J]. Petroleum Drilling Techniques,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090 |
In order to clarify the characteristics of fracturing operation and the production dynamics of three-dimensional developing wells in shale gas reservoir, the Nanchuan atmospheric shale gas reservoir served as the subject for analyzing fracture interference phenomena, fracture network connectivity mechanisms, and their impact on the production of old wells. The statistics showed that the fracturing pressure of three-dimensional developing wells aligned vertically with geological static parameters, and exhibited a positive correlation with well spacing horizontally, while showing a negative correlation with the production degree. Affected by the reservoir’s physical properties and preservation conditions, wells in the lower gas layer exhibited better productivity compared to those in the middle and upper gas layers. When infill wells in the same development layer were fractured, based on the characteristics of casing pressure changes in old wells, the fracture network interference between old and new wells could be classified into high-conductivity fracture connection, high-low conductivity fracture connection, and low- conductivity fracture connection. Based on the interpretation results of well tests, the influence on estimated ultimate recovery (EUR) and typical curves of old wells caused by fracturing interference were classified into 4 types, while minimal impact were caused on the daily production levels of wells in different development layers. However, when zipper fracturing was conducted on shale gas wells in different layers with a spatial distance of less than 200 m, the fracturing pressure of new wells significantly increased. These research results have provided a theoretical basis for the plan deployment, fracturing design, and dynamic optimization and adjustment during the fracturing process in atmospheric shale gas fields.
[1] |
KURTOGLU B, SALMAN A. How to utilize hydraulic fracture interference to improve unconventional development[R]. SPE 177953, 2015.
|
[2] |
MALPANI R, SINHA S, CHARRY L, et al. Improving hydrocarbon recovery of horizontal shale wells through refracturing[R]. SPE 175920, 2015.
|
[3] |
端祥刚,吴建发,张晓伟,等. 四川盆地海相页岩气提高采收率研究进展与关键问题[J]. 石油学报,2022,43(8):1185–1200.
DUAN Xianggang, WU Jianfa, ZHANG Xiaowei, et al. Progress and key issues in the study of enhanced recovery of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(8): 1185–1200.
|
[4] |
魏绍蕾,黄学斌,李军,等. 基于概率法的页岩气单井最终可采量评估: 以焦石坝页岩气田加密井为例[J]. 石油实验地质,2021,43(1):161–168. doi: 10.11781/sysydz202101161
WEI Shaolei, HUANG Xuebin, LI Jun, et al. Shale gas EUR estimation based on a probability method: a case study of infill wells in Jiaoshiba shale gas field[J]. Petroleum Geology and Experiment, 2021, 43(1): 161–168. doi: 10.11781/sysydz202101161
|
[5] |
高健. 四川盆地威远区块页岩气立体开发技术与对策: 以威202井区A平台为例[J]. 天然气工业,2022,42(2):93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010
GAO Jian. Three-dimensional development technologies and countermeasures for shale gas in Weiyuan Block of the Sichuan Basin: a case study on Wei 202A platform[J]. Natural Gas Industry, 2022, 42(2): 93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010
|
[6] |
余凯,鲜成钢,文恒,等. 昭通国家级示范区浅层页岩气立体开发探索: 以海坝背斜南翼YS203H1平台为例[J]. 地球科学,2023,48(1):252–266.
YU Kai, XIAN Chenggang, WEN Heng, et al. Stereoscopic development exploration of shallow shale gas in Zhaotong National Shale Gas Demonstration Area: case study of YS203H1 pad of Haiba anticline southern limb[J]. Earth Science, 2023, 48(1): 252–266.
|
[7] |
张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097
ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097
|
[8] |
何乐,袁灿明,龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发,2020,10(5):63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009
HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009
|
[9] |
袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. doi: 10.11911/syztjs.2023001
YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8. doi: 10.11911/syztjs.2023001
|
[10] |
刘方圆. 定量分析邻井压裂对页岩气井生产的影响[J]. 长江大学学报(自然科学版),2018,15(11):60–63.
LIU Fangyuan. The influence of quantitative analysis of adjacent fracturing well on the production of shale gas wells[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(11): 60–63.
|
[11] |
DETRING J P, GREALY M. Using microseismicity to understand subsurface fracture systems and to optimize completions: Eagle Ford Shale, TX[R]. URTEC-1922814-MS, 2014.
|
[12] |
EJOFODOMI E A, BAIHLY J D, SILVA F. Using a calibrated 3D fracturing simulator to optimize completions of future wells in the Eagle Ford Shale[R]. URTEC-2172668-MS, 2015.
|
[13] |
郭旭洋,金衍,黄雷,等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺,2021,43(3):348–367. doi: 10.13639/j.odpt.2021.03.013
GUO Xuyang, JIN Yan, HUANG Lei, et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348–367. doi: 10.13639/j.odpt.2021.03.013
|
[14] |
ATAEI A, MOTAEI E, YAZDI M E, et al. Rate transient analysis RTA and its application for well connectivity analysis: an integrated production driven reservoir characterization and a case study[R]. SPE 192046, 2018.
|
[15] |
FANG Sidong, XIONG Hao, WANG Baohua, et al. The influence of infill well-caused fracture interference on shale gas production and recovery: A comprehensive numerical simulation study[R]. URTEC-208382-MS, 2021.
|
[16] |
王军磊,贾爱林,位云生,等. 基于复杂缝网模拟的页岩气水平井立体开发效果评价新方法: 以四川盆地南部地区龙马溪组页岩气为例[J]. 天然气工业,2022,42(8):175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014
WANG Junlei, JIA Ailin, WEI Yunsheng, et al. A new method for evaluating tridimensional development effect of shale gas horizontal wells based on complex fracture network simulation: a case study of Longmaxi Formation shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014
|
[17] |
周德华,戴城,方思冬,等. 基于嵌入式离散裂缝模型的页岩气水平井立体开发优化设计[J]. 油气地质与采收率,2022,29(3):113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037
ZHOU Dehua, DAI Cheng, FANG Sidong, et al. Optimization of 3D development in shale gas horizontal wells based on embedded discrete fracture model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037
|
[18] |
孙海成,汤达祯,蒋廷学. 页岩气储层裂缝系统影响产量的数值模拟研究[J]. 石油钻探技术,2011,39(5):63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014
SUN Haicheng, TANG Dazhen, JIANG Tingxue. Numerical simulation of the impact of fracture system on well production in shale formation[J]. Petroleum Drilling Techniques, 2011, 39(5): 63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014
|
[19] |
高玉巧,蔡潇,何希鹏,等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版),2020,50(2):662–674. doi: 10.13278/j.cnki.jjuese.20190130
GAO Yuqiao, CAI Xiao, HE Xipeng, et al. Relationship between shale pressure system and organic pore development of Wufeng-Longmaxi Formation in marginnal conversion zone of southeastern Chongqing Basin[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 662–674. doi: 10.13278/j.cnki.jjuese.20190130
|
[20] |
何希鹏,何贵松,高玉巧,等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业,2023,43(6):1–14.
HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1–14.
|
[21] |
何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业,2021,41(1):59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005
HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005
|
[22] |
房大志,钱劲,梅俊伟,等. 南川区块平桥背斜页岩气开发层系划分及合理井距优化研究[J]. 油气藏评价与开发,2021,11(2):212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010
FANG Dazhi, QIAN Jin, MEI Junwei, et al. Layer series division for development of shale gas of Pingqiao anticline in Nanchuan Block and reasonable well spacing optimization[J]. Reservoir Evaluation and Development, 2021, 11(2): 212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010
|
[23] |
陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060
CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060
|
[24] |
李传亮,庞彦明,周永炳,等. 地层产生体积压裂缝网的条件分析[J]. 断块油气田,2022,29(1):101–106.
LI Chuanliang, PANG Yanming, ZHOU Yongbing, et al. Analysis on forming conditions of fracture network in volume fracturing of formation[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 101–106.
|
[25] |
吕斐, 缪新婷, 周昌玉. 结构内局部高应力区对裂纹扩展路径的影响[C]//压力容器先进技术: 第九届全国压力容器学术会议论文集. 合肥: 合肥工业大学出版社, 2017: 231−239.
LYU Fei, MIU Xinting, ZHOU Changyu. Effect of local high stress zone on crack propagation path[C]//Advanced Technology of Pressure vessel-Proceedings of the 9th National Pressure Vessel Academic Conference and Pressure Vessel Branch Conference of Chinese Mechanical Engineering Society. Hefei: Hefei University of Technology Publishing House, 2017: 231−239.
|
[26] |
周博成,熊炜,赖建林,等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术,2022,50(3):80–85.
ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80–85.
|
[27] |
盛广龙,黄罗义,赵辉,等. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版),2021,43(5):84–96.
SHENG Guanglong, HUANG Luoyi, ZHAO Hui, et al. Integrated simulation approach for fracture network propagation and gas flow in shale gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 84–96.
|
[28] |
王怒涛, 黄炳光. 实用气藏动态分析方法[M]. 北京: 石油工业出版社, 2011: 186-192.
WANG Nutao, HUANG Bingguang. Applied gas reservoir dynamic analysis method[M]. Beijing: Petroleum Industry Press, 2011: 186-192.
|
[29] |
赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术,2018,46(4):96–103. doi: 10.11911/syztjs.2018058
ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103. doi: 10.11911/syztjs.2018058
|
[30] |
刘建彬. 页岩气压裂对正钻井施工的技术研究[J]. 中国石油和化工标准与质量,2020,40(2):239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117
LIU Jianbin. Research on shale gas fracturing technology for normal drilling construction[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(2): 239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117
|
[31] |
唐海,张铠漓,唐瑞雪,等. 层间干扰实质与再认识[J]. 西南石油大学学报(自然科学版),2022,44(5):113–124.
TANG Hai, ZHANG Kaili, TANG Ruixue, et al. The essence and re-recognition of interlayer interference[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(5): 113–124.
|
1. |
陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 .
![]() | |
2. |
荣准,杨学军,张航,颜爽,张琦,张龙龙. 五宝场硬塑性地层斧形曲面PDC齿破岩性能研究. 钻探工程. 2024(02): 85-93 .
![]() | |
3. |
李基伟,李乾,田胜雷,黄达,李玉梅,席岩. 东海深部高研磨地层冲击钻井PDC齿优选研究. 石油机械. 2024(08): 77-84 .
![]() | |
4. |
谢志涛,赵宇璇,郭勇,吴德胜,李亚东. 脊形PDC齿的机械性能和破岩效果. 金刚石与磨料磨具工程. 2024(05): 599-606 .
![]() | |
5. |
程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 .
![]() | |
6. |
刘伟吉,阳飞龙,董洪铎,程润,祝效华. 异形PDC齿混合切削破碎花岗岩特性研究. 工程力学. 2023(03): 245-256 .
![]() | |
7. |
李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 .
![]() | |
8. |
王勇军,梁伟,张涛,杜志强,王磊,佟铮. 深部地热钻探中硬塑性泥岩地层钻头应用研究. 钻探工程. 2023(03): 92-98 .
![]() | |
9. |
盛勇,刘川福,赵亮,丁峰,唐斌,闵鹏. 塔里木盆地HT区块难钻白云岩地层提速技术. 化学工程与装备. 2023(05): 75-77 .
![]() | |
10. |
王勇军,聂德久,张涛,冯守涛,邸佳强,王磊,佟铮. 雄安新区D19地热勘探井钻探技术及成果. 钻探工程. 2023(S1): 299-304 .
![]() | |
11. |
吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 .
![]() |