Citation: | LIU Jinlu, LI Jun, HE Jutao, et al. A segmented prediction method for fluid density and rheology during managed pressure cementing injection stage [J]. Petroleum Drilling Techniques,2024, 52(1):45-53. DOI: 10.11911/syztjs.2024005 |
To solve the problem of difficult prediction of fluid density and rheology during the managed pressure cementing (MPC) injection stage, the measurement experiments of fluid density and rheology were designed, and the rheological model was optimized based on the experimental results. Then, a temperature-pressure coupling model was established considering the difference in fluid properties, and a segmented prediction method for fluid density and rheology was proposed. Finally, the Well X in northern Sichuan was taken as an example, and the simulation results show that the segmented method can describe the rheology of the fluid more accurately by taking the Herschel-Buckley model, the four-parameter model, and other rheological models as the preferred objects. During the MPC injection stage, the conventional calculation method can make the wellhead back pressure value low, which will greatly increase the risk of formation gas invasion. Meanwhile, the annulus temperature field predicted by different methods has little difference. The coupling effect of temperature and pressure has a great influence on the density and rheology of fluid and their variation law, which will also greatly affect the design of the annular slurry column structure and cementing effect. The research results provide a theoretical basis for the design and operation of MPC.
[1] |
李军,刘金璐,杨宏伟,等. 用于固井作业的控制方法、装置、处理器及存储介质:CN202310878671.7[P]. 2023-09-15.
LI Jun, LIU Jinlu, YANG Hongwei, et al. Control methods, devices, processors, and storage media for cementing operations: CN202310878671.7[P]. 2023-09-15.
|
[2] |
孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61.
SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61.
|
[3] |
王敬朋,张伟,吴继伟,等. 呼探1井ϕ139.7mm尾管精细动态控压固井技术[J]. 石油钻探技术,2022,50(6):92–97.
WANG Jingpeng, ZHANG Wei, WU Jiwei, et al. Precise dynamic managed-pressure cementing technologies for ϕ139.7 mm liner cementing in Well Hutan-1[J]. Petroleum Drilling Techniques, 2022, 50(6): 92–97.
|
[4] |
王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010
WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010
|
[5] |
POLITTE M D. Invert oil mud rheology as a function of temperature and pressure[R]. SPE 13458, 1985.
|
[6] |
SHERIF T, AHMED R, SHAH S, et al. Rheological behavior of oil-based drilling foams[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 873–882. doi: 10.1016/j.jngse.2015.07.022
|
[7] |
王乐顶,杨远光,谢应权,等. 新型固井冲洗液评价装置适用性分析[J]. 石油钻探技术,2017,45(1):73–77.
WANG Leding, YANG Yuanguang, XIE Yingquan, et al. Applicability of a new device for cementing flushing fluid evaluation[J]. Petroleum Drilling Techniques, 2017, 45(1): 73–77.
|
[8] |
VIPULANANDAN C, MADDI A R. Characterizing the thermal, piezoresistive, rheology and fluid loss of smart foam cement slurries using artificial neural network and Vipulanandan Models[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109161. doi: 10.1016/j.petrol.2021.109161
|
[9] |
滕学清,樊洪海,杨成新,等. 一种新的高温高压流变性分析模型[J]. 科学技术与工程,2015,15(34):162–167. doi: 10.3969/j.issn.1671-1815.2015.34.028
TENG Xueqing, FAN Honghai, YANG Chengxin, et al. The research of new analysis method of rheological property under high temperature and high pressure[J]. Science Technology and Engineering, 2015, 15(34): 162–167. doi: 10.3969/j.issn.1671-1815.2015.34.028
|
[10] |
徐璧华,冯青豪,谢应权,等. 考虑循环温度影响下注水泥流变性能计算方法[J]. 钻井液与完井液,2017,34(6):79–82.
XU Bihua, FENG Qinghao, XIE Yingquan, et al. A method of calculating rheology of cement slurry affected by circulation temperature[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 79–82.
|
[11] |
MAO Hui, YANG Yan, ZHANG Hao, et al. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applica-tions[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106795. doi: 10.1016/j.petrol.2019.106795
|
[12] |
谢春林,杨丽丽,蒋官澄,等. 高温高压耦合条件下油基钻井液的流变特性规律及其数学模型[J]. 钻井液与完井液,2021,38(5):568–575.
XIE Chunlin, YANG Lili, JIANG Guancheng, et al. Rheological characteristics of oil base drilling fluids and its mathematical model under coupled HTHP conditions[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 568–575.
|
[13] |
LIU Jinlu, LI Jun, LI Hui, et al. Casing force analysis during MPC injection considering the coupling effect of temperature and pressure[R]. ARMA-2023-0221, 2023.
|
[14] |
李琪,王再兴,李旭阳,等. 赫-巴流体在偏心环空中的波动压力计算模型[J]. 石油学报,2016,37(9):1187–1192. doi: 10.7623/syxb201609014
LI Qi, WANG Zaixing, LI Xuyang, et al. The computational model for surge pressure of Herschel-Bulkley fluid in eccentric annulus[J]. Acta Petrolei Sinica, 2016, 37(9): 1187–1192. doi: 10.7623/syxb201609014
|
[15] |
赵胜英,鄢捷年,丁彤伟,等. 抗高温高密度水基钻井液流变性研究[J]. 天然气工业,2007,27(5):78–80.
ZHAO Shengying, YAN Jienian, DING Tongwei, et al. Study on rheological properties of high-temperature high-density water based drilling fluid[J]. Natural Gas Industry, 2007, 27(5): 78–80.
|
[16] |
CHENG Haiyong, WU Shunchuan, LI Hong, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill[J]. Construction and Building Materials, 2020, 231: 117117. doi: 10.1016/j.conbuildmat.2019.117117
|
[17] |
LIU Jinlu, LI Jun, YANG Hongwei, et al. A wellbore fluid performance parameters–temperature–pressure coupling prediction model during the managed pressure cementing injection stage[J/OL]. Energy Science & Engineering: 1-18 [2023-12-18].https://doi.org/10.1002/ese3.1632.
|
[18] |
张朝举,李军,杨宏伟,等. 高压盐水层控压放水模拟计算研究[J]. 钻采工艺,2021,44(3):1–4.
ZHANG Chaoju, LI Jun, YANG Hongwei, et al. Simulation computation of pressure-controlled water drainage in high-pressure brine layer[J]. Drilling & Production Technology, 2021, 44(3): 1–4.
|
[19] |
LIU Jinlu, LI Jun, LI Hui, et al. Research of casing deformation problem based on U-tube effect during cementing injection stage[R]. ARMA-2022-0388, 2022.
|
[20] |
LIU Jinlu, LI Jun, YANG Hongwei, et al. Prediction model of wellbore temperature field in ultra-deep shale oil horizontal well during managed pressure cementing[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2024: 1139-1151.
|
[21] |
刘洋,陈敏,吴朗,等. 四川盆地窄密度窗口超深井控压固井工艺[J]. 钻井液与完井液,2020,37(2):214–220.
LIU Yang, CHEN Min, WU Lang, et al. Managed pressure well cementing techniques for wells with narrow safe drilling windows in Sichuan Basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 214–220.
|
[22] |
王江帅,李军,何岩峰,等. 变梯度控压钻井井控过程中井口回压变化规律[J]. 石油学报,2021,42(11):1499–1505.
WANG Jiangshuai, LI Jun, HE Yanfeng, et al. Variation law of wellhead back pressure under well control during variable gradient managed pressure drilling[J]. Acta Petrolei Sinica, 2021, 42(11): 1499–1505.
|
[23] |
魏凯,褚冰川,包莉军,等. 基于相场法的偏心环空注水泥顶替过程数值模拟[J]. 钻采工艺,2020,43(3):123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37
WEI Kai, CHU Bingchuan, BAO Lijun, et al. Numerical simulation of cementing displacement process in eccentric annulus based on phase field method[J]. Drilling & Production Technology, 2020, 43(3): 123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37
|
[1] | LI Tao, YANG Zhe, XU Weiqiang, YANG Qiang, YANG Zhaoliang. Optimized and Fast Drilling Technology for Deep Shale Gas Horizontal Wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16-21. DOI: 10.11911/syztjs.2022036 |
[2] | YANG Jing, TU Fuhong, HUO Rujun, TAO Ruidong, SHANG Zibo, GUO Liang. Key Technologies for Slim Hole Drilling in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 22-27. DOI: 10.11911/syztjs.2020082 |
[3] | SHEN Zhaochao, HUO Rujun, YU Yanfei, DONG Yifan, NI Xiaowei, LEI Yu. One-Trip Drilling Technology of the Second-Spud Section for Slim-Holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15-20. DOI: 10.11911/syztjs.2020081 |
[4] | HUANG Guoping, HE Shiming, TANG Ming, LIU Yang, LEI Ming. A Study on the Effect of Displacement Gas Cut on Fractured Reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21-25. DOI: 10.11911/syztjs.2018125 |
[5] | KUANG Lixin, LIU Weidong, GAN Xinxing, JIANG Zhenghua, CHEN Shikui. Acceleration Potentials Analysis of Shale Gas Horizontal Well Drilling in the South Pingqiao Block of Fuling[J]. Petroleum Drilling Techniques, 2018, 46(4): 16-22. DOI: 10.11911/syztjs.2018102 |
[6] | YANG Haiping. Optimized and Fast Drilling Technology for Horizontal Shale Gas Wells in Pingqiao and Jiangdong Blocks of Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 13-19. DOI: 10.11911/syztjs.2018071 |
[7] | SHI Bingzhong, XIE Chao, LI Sheng, LIU Jinhua, CHEN Xiaofei. Development and Application of Drilling Fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37-41. DOI: 10.11911/syztjs.201706007 |
[8] | LIU Biao, PAN Lijuan, ZHANG Jun, BAI Binzhen, LI Shuanggui. The Optimized Drilling Techniques Used in Ultra-Deep and Slim-Hole Horizontal Wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11-16. DOI: 10.11911/syztjs.201606002 |
[9] | Wan Xuxin. Oil-Based Drilling Fluid Applied in Drilling Shale Oil Reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44-50. DOI: 10.3969/j.issn.1001-0890.2013.06.009 |
[10] | Zhao Xiangyang, Zhang Xiaoping, Chen Lei, Zhang Zhenhuo, Sun Yan. Application of Formate Drilling Fluid in Changbei Block[J]. Petroleum Drilling Techniques, 2013, 41(1): 40-44. DOI: 10.3969/j.issn.1001-0890.2013.01.008 |
1. |
蔡振,张建鑫,郭少璞. 油田超深井钻井关键技术研究与分析. 石化技术. 2023(04): 101-103 .
![]() | |
2. |
黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
![]() | |
3. |
谢关宝. 轻质水泥浆固井质量测井评价标准构建. 石油钻探技术. 2022(01): 119-126 .
![]() | |
4. |
陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 .
![]() | |
5. |
宋振响,周卓明,徐旭辉,王保华,李浩,马中良,陈斐然. “十三五”中国石化油气资源评价关键技术进展与发展方向. 中国石油勘探. 2022(03): 27-37 .
![]() | |
6. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
7. |
甘心. 钻井提速用振动冲击工具研究进展. 钻探工程. 2021(02): 85-93 .
![]() | |
8. |
刘平全,李磊兵,施禹岑,韩龙. 井壁深穿透电控钻孔技术研究与现场试验. 石油钻探技术. 2021(03): 55-61 .
![]() | |
9. |
张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 .
![]() | |
10. |
汪海阁,黄洪春,毕文欣,纪国栋,周波,卓鲁斌. 深井超深井油气钻井技术进展与展望. 天然气工业. 2021(08): 163-177 .
![]() | |
11. |
杨志军,杜旭林,曹仁义,葛增壮,杨松林. 复杂小断块采收率及经济合理井网密度模型. 断块油气田. 2020(01): 80-84 .
![]() | |
12. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() | |
13. |
苏剑波. 高温高压深井试油完井初探. 石化技术. 2020(10): 200-201 .
![]() | |
14. |
杨孟芝,吴海欧,王恒,魏斌,石文睿. 页岩气水平井裸眼井测井工艺及应用. 江汉石油职工大学学报. 2020(06): 18-20 .
![]() | |
15. |
黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 .
![]() |