ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir [J]. Petroleum Drilling Techniques,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090
Citation: ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir [J]. Petroleum Drilling Techniques,2023, 51(5):149-155. DOI: 10.11911/syztjs.2023090

Three-Dimensional Development Characteristics and Fracture Network Interference of Atmospheric Shale Gas Reservoir

More Information
  • Received Date: May 21, 2023
  • Revised Date: August 22, 2023
  • Available Online: August 25, 2023
  • In order to clarify the characteristics of fracturing operation and the production dynamics of three-dimensional developing wells in shale gas reservoir, the Nanchuan atmospheric shale gas reservoir served as the subject for analyzing fracture interference phenomena, fracture network connectivity mechanisms, and their impact on the production of old wells. The statistics showed that the fracturing pressure of three-dimensional developing wells aligned vertically with geological static parameters, and exhibited a positive correlation with well spacing horizontally, while showing a negative correlation with the production degree. Affected by the reservoir’s physical properties and preservation conditions, wells in the lower gas layer exhibited better productivity compared to those in the middle and upper gas layers. When infill wells in the same development layer were fractured, based on the characteristics of casing pressure changes in old wells, the fracture network interference between old and new wells could be classified into high-conductivity fracture connection, high-low conductivity fracture connection, and low- conductivity fracture connection. Based on the interpretation results of well tests, the influence on estimated ultimate recovery (EUR) and typical curves of old wells caused by fracturing interference were classified into 4 types, while minimal impact were caused on the daily production levels of wells in different development layers. However, when zipper fracturing was conducted on shale gas wells in different layers with a spatial distance of less than 200 m, the fracturing pressure of new wells significantly increased. These research results have provided a theoretical basis for the plan deployment, fracturing design, and dynamic optimization and adjustment during the fracturing process in atmospheric shale gas fields.

  • [1]
    KURTOGLU B, SALMAN A. How to utilize hydraulic fracture interference to improve unconventional development[R]. SPE 177953, 2015.
    [2]
    MALPANI R, SINHA S, CHARRY L, et al. Improving hydrocarbon recovery of horizontal shale wells through refracturing[R]. SPE 175920, 2015.
    [3]
    端祥刚,吴建发,张晓伟,等. 四川盆地海相页岩气提高采收率研究进展与关键问题[J]. 石油学报,2022,43(8):1185–1200.

    DUAN Xianggang, WU Jianfa, ZHANG Xiaowei, et al. Progress and key issues in the study of enhanced recovery of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(8): 1185–1200.
    [4]
    魏绍蕾,黄学斌,李军,等. 基于概率法的页岩气单井最终可采量评估: 以焦石坝页岩气田加密井为例[J]. 石油实验地质,2021,43(1):161–168. doi: 10.11781/sysydz202101161

    WEI Shaolei, HUANG Xuebin, LI Jun, et al. Shale gas EUR estimation based on a probability method: a case study of infill wells in Jiaoshiba shale gas field[J]. Petroleum Geology and Experiment, 2021, 43(1): 161–168. doi: 10.11781/sysydz202101161
    [5]
    高健. 四川盆地威远区块页岩气立体开发技术与对策: 以威202井区A平台为例[J]. 天然气工业,2022,42(2):93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010

    GAO Jian. Three-dimensional development technologies and countermeasures for shale gas in Weiyuan Block of the Sichuan Basin: a case study on Wei 202A platform[J]. Natural Gas Industry, 2022, 42(2): 93–99. doi: 10.3787/j.issn.1000-0976.2022.02.010
    [6]
    余凯,鲜成钢,文恒,等. 昭通国家级示范区浅层页岩气立体开发探索: 以海坝背斜南翼YS203H1平台为例[J]. 地球科学,2023,48(1):252–266.

    YU Kai, XIAN Chenggang, WEN Heng, et al. Stereoscopic development exploration of shallow shale gas in Zhaotong National Shale Gas Demonstration Area: case study of YS203H1 pad of Haiba anticline southern limb[J]. Earth Science, 2023, 48(1): 252–266.
    [7]
    张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. doi: 10.11911/syztjs.2022097

    ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21. doi: 10.11911/syztjs.2022097
    [8]
    何乐,袁灿明,龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发,2020,10(5):63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009

    HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63–69. doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009
    [9]
    袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. doi: 10.11911/syztjs.2023001

    YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8. doi: 10.11911/syztjs.2023001
    [10]
    刘方圆. 定量分析邻井压裂对页岩气井生产的影响[J]. 长江大学学报(自然科学版),2018,15(11):60–63.

    LIU Fangyuan. The influence of quantitative analysis of adjacent fracturing well on the production of shale gas wells[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(11): 60–63.
    [11]
    DETRING J P, GREALY M. Using microseismicity to understand subsurface fracture systems and to optimize completions: Eagle Ford Shale, TX[R]. URTEC-1922814-MS, 2014.
    [12]
    EJOFODOMI E A, BAIHLY J D, SILVA F. Using a calibrated 3D fracturing simulator to optimize completions of future wells in the Eagle Ford Shale[R]. URTEC-2172668-MS, 2015.
    [13]
    郭旭洋,金衍,黄雷,等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺,2021,43(3):348–367. doi: 10.13639/j.odpt.2021.03.013

    GUO Xuyang, JIN Yan, HUANG Lei, et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348–367. doi: 10.13639/j.odpt.2021.03.013
    [14]
    ATAEI A, MOTAEI E, YAZDI M E, et al. Rate transient analysis RTA and its application for well connectivity analysis: an integrated production driven reservoir characterization and a case study[R]. SPE 192046, 2018.
    [15]
    FANG Sidong, XIONG Hao, WANG Baohua, et al. The influence of infill well-caused fracture interference on shale gas production and recovery: A comprehensive numerical simulation study[R]. URTEC-208382-MS, 2021.
    [16]
    王军磊,贾爱林,位云生,等. 基于复杂缝网模拟的页岩气水平井立体开发效果评价新方法: 以四川盆地南部地区龙马溪组页岩气为例[J]. 天然气工业,2022,42(8):175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014

    WANG Junlei, JIA Ailin, WEI Yunsheng, et al. A new method for evaluating tridimensional development effect of shale gas horizontal wells based on complex fracture network simulation: a case study of Longmaxi Formation shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 175–189. doi: 10.3787/j.issn.1000-0976.2022.08.014
    [17]
    周德华,戴城,方思冬,等. 基于嵌入式离散裂缝模型的页岩气水平井立体开发优化设计[J]. 油气地质与采收率,2022,29(3):113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037

    ZHOU Dehua, DAI Cheng, FANG Sidong, et al. Optimization of 3D development in shale gas horizontal wells based on embedded discrete fracture model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 113–120. doi: 10.13673/j.cnki.cn37-1359/te.202108037
    [18]
    孙海成,汤达祯,蒋廷学. 页岩气储层裂缝系统影响产量的数值模拟研究[J]. 石油钻探技术,2011,39(5):63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014

    SUN Haicheng, TANG Dazhen, JIANG Tingxue. Numerical simulation of the impact of fracture system on well production in shale formation[J]. Petroleum Drilling Techniques, 2011, 39(5): 63–67. doi: 10.3969/j.issn.1001-0890.2011.05.014
    [19]
    高玉巧,蔡潇,何希鹏,等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版),2020,50(2):662–674. doi: 10.13278/j.cnki.jjuese.20190130

    GAO Yuqiao, CAI Xiao, HE Xipeng, et al. Relationship between shale pressure system and organic pore development of Wufeng-Longmaxi Formation in marginnal conversion zone of southeastern Chongqing Basin[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 662–674. doi: 10.13278/j.cnki.jjuese.20190130
    [20]
    何希鹏,何贵松,高玉巧,等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业,2023,43(6):1–14.

    HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1–14.
    [21]
    何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业,2021,41(1):59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005

    HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59–71. doi: 10.3787/j.issn.1000-0976.2021.01.005
    [22]
    房大志,钱劲,梅俊伟,等. 南川区块平桥背斜页岩气开发层系划分及合理井距优化研究[J]. 油气藏评价与开发,2021,11(2):212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010

    FANG Dazhi, QIAN Jin, MEI Junwei, et al. Layer series division for development of shale gas of Pingqiao anticline in Nanchuan Block and reasonable well spacing optimization[J]. Reservoir Evaluation and Development, 2021, 11(2): 212–218. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.010
    [23]
    陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060

    CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060
    [24]
    李传亮,庞彦明,周永炳,等. 地层产生体积压裂缝网的条件分析[J]. 断块油气田,2022,29(1):101–106.

    LI Chuanliang, PANG Yanming, ZHOU Yongbing, et al. Analysis on forming conditions of fracture network in volume fracturing of formation[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 101–106.
    [25]
    吕斐, 缪新婷, 周昌玉. 结构内局部高应力区对裂纹扩展路径的影响[C]//压力容器先进技术: 第九届全国压力容器学术会议论文集. 合肥: 合肥工业大学出版社, 2017: 231−239.

    LYU Fei, MIU Xinting, ZHOU Changyu. Effect of local high stress zone on crack propagation path[C]//Advanced Technology of Pressure vessel-Proceedings of the 9th National Pressure Vessel Academic Conference and Pressure Vessel Branch Conference of Chinese Mechanical Engineering Society. Hefei: Hefei University of Technology Publishing House, 2017: 231−239.
    [26]
    周博成,熊炜,赖建林,等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术,2022,50(3):80–85.

    ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80–85.
    [27]
    盛广龙,黄罗义,赵辉,等. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版),2021,43(5):84–96.

    SHENG Guanglong, HUANG Luoyi, ZHAO Hui, et al. Integrated simulation approach for fracture network propagation and gas flow in shale gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 84–96.
    [28]
    王怒涛, 黄炳光. 实用气藏动态分析方法[M]. 北京: 石油工业出版社, 2011: 186-192.

    WANG Nutao, HUANG Bingguang. Applied gas reservoir dynamic analysis method[M]. Beijing: Petroleum Industry Press, 2011: 186-192.
    [29]
    赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术,2018,46(4):96–103. doi: 10.11911/syztjs.2018058

    ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103. doi: 10.11911/syztjs.2018058
    [30]
    刘建彬. 页岩气压裂对正钻井施工的技术研究[J]. 中国石油和化工标准与质量,2020,40(2):239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117

    LIU Jianbin. Research on shale gas fracturing technology for normal drilling construction[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(2): 239–240. doi: 10.3969/j.issn.1673-4076.2020.02.117
    [31]
    唐海,张铠漓,唐瑞雪,等. 层间干扰实质与再认识[J]. 西南石油大学学报(自然科学版),2022,44(5):113–124.

    TANG Hai, ZHANG Kaili, TANG Ruixue, et al. The essence and re-recognition of interlayer interference[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(5): 113–124.
  • Cited by

    Periodical cited type(19)

    1. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    2. 刘奎,丁士东,初永涛,刘仍光. 页岩气井压裂交变载荷水泥环密封能力研究. 石油机械. 2023(11): 79-86 .
    3. 丁士东,刘奎,刘小刚,周仕明,陶谦,李鹏程. 环空加压固井对双层套管水泥环界面径向应力的影响. 石油钻探技术. 2022(01): 30-37 . 本站查看
    4. 郝海洋,刘俊君,何吉标,王建斌,彭博,张家瑞. 页岩气超长水平井预控水泥环封固失效水泥浆技术. 天然气勘探与开发. 2022(03): 108-115 .
    5. 高德利,刘奎,王宴滨,刘金海,李轩. 页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展. 石油学报. 2022(12): 1798-1812 .
    6. 郑双进,杜冬楠,李足平,刘涛,刘裕,潘祎. 固井水泥环封隔压力预测方法. 中国科技论文. 2021(01): 7-11 .
    7. 刘奎,丁士东,周仕明,陶谦,杨广国,刘仍光,高元. 套管内压周期变化水泥环应力计算与失效分析. 石油机械. 2021(05): 1-8 .
    8. 席岩,李方园,王松,刘明杰,夏铭莉,曾夏茂,钟文力. 利用预应力固井方法预防水泥环微环隙研究. 特种油气藏. 2021(06): 144-150 .
    9. 何吉标,彭小平,刘俊君,屈勇,袁欢,彭博. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用. 石油钻探技术. 2020(03): 35-40 . 本站查看
    10. 毛新军,曹植纲,陈超峰,胡广文,封猛,咸玉席. 高产井地层特征的热流耦合温度反演新方法. 石油钻探技术. 2020(04): 118-123 . 本站查看
    11. 丁嘉迪,沈吉云,张硕,纪宏飞,王琳琳. 基于多孔介质理论的油井水泥石破坏准则. 钻井液与完井液. 2020(06): 763-770 .
    12. 席岩,李军,柳贡慧,陶谦,连威. 页岩气水平井压裂过程中水泥环完整性分析. 石油科学通报. 2019(01): 57-68 .
    13. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    14. 罗攀登,李涵宇,翟立军,李春月,吕欣润,牟建业. 塔河油田超临界CO_2压裂井筒与裂缝温度场. 断块油气田. 2019(02): 225-230 .
    15. 吴怡,谢仁军,刘书杰,蒋凯,邓金根,蔚宝华. 考虑温度效应的高温高压直井井壁稳定性规律. 断块油气田. 2019(02): 253-256 .
    16. 曾静,高德利,王宴滨,房军. 体积压裂井筒水泥环拉伸失效机理研究. 钻采工艺. 2019(03): 1-4+6 .
    17. 张智,丁剑,赵苑瑾,邓虎,卢齐. 页岩气井环空带压临界控制值计算方法. 西南石油大学学报(自然科学版). 2019(06): 155-164 .
    18. 曾德智,喻智明,何奇垚,刘乔平,施太和. 页岩气井环空带压安全风险定量评价方法研究. 西南石油大学学报(自然科学版). 2019(06): 146-154 .
    19. 章娅菲,祁珊珊,窦益华. 基于纳米流控系统的超弹套管保护套结构原理与性能试验. 石油钻探技术. 2018(06): 54-58 . 本站查看

    Other cited types(13)

Catalog

    Article Metrics

    Article views (172) PDF downloads (66) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return