ZENG Hao, JIN Yan, WANG Haibo. Damage mechanism and countermeasures for tight oil reservoirs in Ningdong Oilfield [J]. Petroleum Drilling Techniques,2024, 52(1):62-68. DOI: 10.11911/syztjs.2023109
Citation: ZENG Hao, JIN Yan, WANG Haibo. Damage mechanism and countermeasures for tight oil reservoirs in Ningdong Oilfield [J]. Petroleum Drilling Techniques,2024, 52(1):62-68. DOI: 10.11911/syztjs.2023109

Damage Mechanism and Countermeasures for Tight Oil Reservoirs in Ningdong Oilfield

More Information
  • Received Date: July 09, 2023
  • Revised Date: November 13, 2023
  • Available Online: November 17, 2023
  • Tight oil reservoirs in Ningdong Oilfield in Ordos Basin are characterized by complex lithology, low porosity and permeability, and strong heterogeneity. Drilling fluid losses occur frequently during the drilling process, and the invasion of the solid and liquid phase can easily cause damage to the formation. In order to determine the microscopic characteristics and damage mechanism of the tight oil reservoir in Ningdong Oilfield and reduce the damage to the reservoir during drilling and completion, systematic experimental studies such as scanning electron microscope (SEM) and solid-liquid damage tests were carried out. It was determined that the main causes of damage to the studied tight oil formation were solid phase invasion, water blockage, and associated water and salt sensitivity. The damage mechanism of the tight oil reservoir in this oilfield was clarified. In addition, it was found that the potassium ammonium-based polymer drilling fluid caused great damage to the tight oil formation, and the permeability recovery was low when the reservoir was treated with invisible acid. In view of the damage mechanism of tight oil reservoirs and the shortcomings of drilling fluid used in the oilfield, a low-damage and solid-free drilling fluid was constructed with a viscosity of 45.5 mPa·s, an API filtration loss of 3.5 mL, achieving a permeability recovery more than 85%, which caused low damage to the formation and could meet the requirements of protecting tight oil reservoirs in Ningdong Oilfield. The research results can provide a basis for formulating technical protection measures for tight oil reservoirs in Ordos Basin.

  • [1]
    邹才能,潘松圻,赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发,2020,47(2):416–426.

    ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenges and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416–426.
    [2]
    孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10.
    [3]
    徐同台, 熊友明, 康毅力. 保护油气层技术[M]. 3 版. 北京: 石油工业出版社, 2010.

    XU Tongtai, XIONG Youming, KANG Yili. Technology for protecting oil and gas layers[M]. 3rd ed. Beijing: Petroleum Industry Press, 2010.
    [4]
    WEI Shiming, JIN Yan, XIA Yang, et al. The flowback and production analysis in sub-saturated fractured shale reservoirs[J]. Journal of Petroleum Science & Engineering, 2020, 186: 106694.
    [5]
    CIVAN F. Reservoir formation damage: fundamentals, modeling, assessment, and mitigation[M]. 2nd ed. Amsterdam: Gulf Professional Publishing, 2007.
    [6]
    金永辉, 王治富, 孙庆名,等. 致密储层纳米增注技术研究与应用[J]. 特种油气藏,2023,30(1):169–174.

    JIN Yonghui, WANG Zhifu, SUN Qingming, et al. Research and application of the nano-injection enhancing technology in tight reservoir[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 169–174.
    [7]
    张强. 文 23 储气库储层段钻井液及储层保护技术[J]. 断块油气田,2023,30(3):517–522.

    ZHANG Qiang. Drilling fluid and reservoir protection technology of reservoir sections in Wen 23 Gas Sstorage[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 517–522.
    [8]
    ELKEWIDY T I. Integrated evaluation of formation damage/remediation potential of low permeability reservoirs[R]. SPE 163310, 2012.
    [9]
    BAHRAMI H, REZAEE R, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 100–106.
    [10]
    滕学清,康毅力,张震,等. 塔里木盆地深层中–高渗砂岩储层钻井完井损害评价[J]. 石油钻探技术,2018,46(1):37–43.

    TENG Xueqing, KANG Yili, ZHANG Zhen, et al. Evaluation of drilling and completion damage in deep medium-to-high permeability permeability sandstone reservoirs in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37–43.
    [11]
    ZHANG Hongxia, YAN Jienian, SHU Yong, et al. Rheological property of low-damage, ideal packing, film-forming amphoteric/ sulfonation polymer drilling fluids[J]. Journal of Central South University of Technology, 2008, 15(supplement 1): 429–433.
    [12]
    王文雄,肖晖,叶亮,等. 不同岩性致密砂岩水锁伤害深度实验研究[J]. 非常规油气,2022,9(4):71–77.

    WANG Wenxiong, XIAO Hui, YE Liang, et al. Experimental study on water blocking damage depth of tight sandstone with different lithology[J]. Unconventional Oil & Gas, 2022, 9(4): 71–77.
    [13]
    HANDS N, KOWBEL K, MAIKRANZ S, et al. Drill-in fluid reduces formation damage, increases production rates[J]. Oil & Gas Journal, 1998, 96(28): 65–69.
    [14]
    张蕊,付春苗,王桂芹. 宁东油田ND61井钻井工程设计[J]. 延安大学学报(自然科学版),2019,38(3):90–93, 98.

    ZHANG Rui, FU Chunmiao, WANG Guiqin. Drilling engineering design of ND61 well in Ningdong Oilfield[J]. Journal of Yan'an University(Natural Science Edition), 2019, 38(3): 90–93, 98.
    [15]
    常洪超,陈荣凤,胡金鹏,等. 宁东油田NP7小井眼水平井钻井液技术[J]. 钻井液与完井液,2013,30(3):50–53.

    CHANG Hongchao, CHEN Rongfeng, HU Jinpeng, et al. Drilling fluid technology for slim-hole horizontal well NP7 in Ningdong Oilfield[J]. Drilling Fluid & Completion Fluid, 2013, 30(3): 50–53.
    [16]
    LI Xiaoqi, FANG Jichao, JI Bingyu. Quantitative analysis of phase separation using the lattice Boltzmann method[J]. Frontiers in Earth Science, 2021, 9: 748450.
    [17]
    曹辉,李宝军,赵向阳. 厄瓜多尔 Tambococha 油田水平井钻井液技术[J]. 石油钻探技术,2022,50(1):54–59.

    CAO Hui, LI Baojun, ZHAO Xiangyang. Drilling fluid technology for horizontal wells in Ecuador Tambococha Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 54–59.
    [18]
    贾虎 ,代昌楼 ,李三喜 ,等. 一种耐高温密度可调的柔性胶粒新型完井液[J]. 天然气工业,2022,42(12):106–116.

    JIA Hu, DAI Changlou, LI Sanxi, et al. A novel high-temperature-resistant, variable-density, flexible colloidal particle completion fluid[J]. Natural Gas Industry, 2022, 42(12): 106–116.
    [19]
    许洁,许林,李习文,等. 新型储层钻井完井一体化工作液设计及性能评价[J]. 钻井液与完井液,2023,40(2):184–192.

    XU Jie, XU Lin, LI Xiwen, et al. Design and evaluation of an integrated drilling and completion fluid[J]. Drilling Fluid & Completion Fluid., 2023, 40(2): 184–192.
    [20]
    廖权文,胡建均,史怀忠,等. 文 23 储气库钻井工程关键技术[J]. 石油钻采工艺,2023,45(2):160–166.

    LIAO Quanwen, HU Jianjun, SHI Huaizhong, et al. Key technologies in drilling engineering of Wen 23 Underground Gas Storage[J]. Oil Drilling & Production Technology, 2023, 45(2): 160–166.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]SHI Peiming, NI Huafeng, HE Huifeng, SHI Chongdong, LI Luke, ZHANG Yanbing. Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17-23. DOI: 10.11911/syztjs.2024112
    [3]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [4]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [5]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [6]JIA Jia, XIA Zhongyue, FENG Lei, LI Jian, WANG Yang. Key Technology of Optimized and Fast Slim Hole Drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64-70. DOI: 10.11911/syztjs.2021110
    [7]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [8]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [9]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [10]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002
  • Cited by

    Periodical cited type(53)

    1. 张天明,李林斌,徐辉,刘圆. 基于可靠性理论的导管架平台抗台策略. 船海工程. 2025(01): 105-110 .
    2. 闫新江,殷志明,任美鹏,杨向前,黄小光,韩忠英. 海上浅层气井喷燃烧场景模拟. 石油工程建设. 2024(02): 39-45 .
    3. 肖夏,陈彬,罗泽利,张冠洪,严德. 深水钻井礁灰岩地层失返性井漏处理与认识. 海洋石油. 2024(02): 100-103 .
    4. 任冠龙,孟文波,张崇,何玉发,张锐. 深水气井测试封隔器全过程力学行为评估. 油气井测试. 2024(05): 8-14 .
    5. 任冠龙,孟文波,余意,黄亮,曾春珉. 深水气井测试井筒温度场调控技术. 化学工程与装备. 2023(04): 111-113 .
    6. 郝希宁,何玉发,程兵,张更,李军. 双层连续管双梯度钻井井筒钻井液当量循环密度分布特征. 石油钻采工艺. 2023(04): 418-423 .
    7. 刘文远. 深水气井清井放喷过程井筒气液流动型态模拟研究. 北京石油化工学院学报. 2023(04): 28-34 .
    8. 幸雪松,袁俊亮,李忠慧,孙翀,赵毅. 南海深水高温高压条件下地层破裂压力的确定. 石油钻探技术. 2023(06): 18-24 . 本站查看
    9. 李中. 中国海油油气井工程数字化和智能化新进展与展望. 石油钻探技术. 2022(02): 1-8 . 本站查看
    10. 卢静生,吴思婷,李栋梁,梁德青,魏伟,何勇,史伶俐,邓福成,熊友明. 海洋天然气水合物开采的固相控制策略. 新能源进展. 2022(02): 137-145 .
    11. 卢静生,林德才,李栋梁,梁德青,张逸群,吴思婷,何勇,史伶俐. 天然气水合物开发的水平井控水控砂完井研究进展. 新能源进展. 2022(05): 447-455 .
    12. 王旱祥,王姣姣,于长录,刘延鑫. 天然气水合物开采关键技术研究现状. 钻采工艺. 2022(05): 51-56 .
    13. 王江帅,付盼,胡旭辉,宫臣兴,邓嵩,唐政,殷文. 海洋双层管双梯度钻井井筒温度分布规律研究. 石油机械. 2022(12): 51-57 .
    14. 王养锋,刘智勤,刘贤玉,陈力,艾常明,黄飞宇. 南海北部盆地深水钻井关键技术现状. 新疆石油天然气. 2022(03): 12-18 .
    15. 谢玉洪. 基于多元作业方式协同的海洋油气集约化勘探管理. 石油学报. 2021(01): 119-127 .
    16. 刘书杰,吴怡,谢仁军,焦金刚. 深水深层井钻井关键技术发展与展望. 石油钻采工艺. 2021(02): 139-145 .
    17. 肖剑. HEM钻井液在南海西部深水LS26-1-1井中的应用. 化工管理. 2021(17): 195-196 .
    18. 申屠俊杰,林伯韬,陆吉. 深水浅层浅水流灾害风险评价与防灾方法研究. 石油科学通报. 2021(03): 451-464 .
    19. 冉旭,刘坤翔,张玉山. 深水与浅水探井套管柱设计方法对比. 中国石油和化工标准与质量. 2021(19): 145-146 .
    20. 步玉环,杜嘉培,柳华杰,郭胜来,沈忠厚. 深水弱胶结地层固井强度梯度层理论与固化材料性能. 中国石油大学学报(自然科学版). 2021(04): 74-83 .
    21. 王江帅,李军,柳贡慧,杨宏伟,郝希宁,何玉发,周云健. 考虑温度和回压影响的控压钻井参数设计方法. 石油机械. 2021(12): 10-16 .
    22. 游尧,姜韡,田峥,艾飞. PDC钻头旋转齿技术在南海东部西江区块深部地层应用. 海洋石油. 2020(01): 79-83 .
    23. 王江帅,李军,柳贡慧,陈安明,骆奎栋,黄涛,汪伟. 变压力梯度下钻井环空压力预测. 石油学报. 2020(04): 497-504 .
    24. 宁伏龙,方翔宇,李彦龙,窦晓峰,王林杰,刘志超,罗强,孙嘉鑫,赵颖杰,张准,刘天乐,张凌,蒋国盛. 天然气水合物开采储层出砂研究进展与思考. 地质科技通报. 2020(01): 137-148 .
    25. 武斌,杨焕强,王柱军. 深水油藏窄密度窗口气井固井动态仿真模拟研究与应用. 特种油气藏. 2020(04): 156-162 .
    26. 史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 .
    27. 郑毅. 海洋石油深水钻井作业风险分析及应对策略探讨. 石化技术. 2019(01): 156-157 .
    28. 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术. 石油钻探技术. 2019(01): 13-19 . 本站查看
    29. 程朋. 海洋石油深水钻完井技术措施. 化学工程与装备. 2019(04): 165-166 .
    30. 尹邦堂,张旭鑫,孙宝江,李相方,黄名召. 深水水合物藏钻井溢流早期监测实验装置设计. 实验室研究与探索. 2019(04): 33-37 .
    31. 孙金,吴时国,邓金根,王吉亮. 深水钻井浅水流地层井眼坍塌影响因素分析. 石油钻探技术. 2019(02): 34-41 . 本站查看
    32. 耿铁,邱正松,汤志川,赵欣,苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用. 石油钻探技术. 2019(03): 82-88 . 本站查看
    33. 赵治锋. 北极圈内喀拉海优快建井技术研究. 石化技术. 2019(07): 60-61 .
    34. 狄明利,赵远远,邱文发. FLAT-PRO合成基钻井液在南海东部超深水井的应用. 广东化工. 2019(20): 38-40 .
    35. 刘喜亮. 深水钻井浅层地质灾害及井控措施论述. 中国石油和化工标准与质量. 2019(20): 134-135 .
    36. 孙东征. 深水浅层安全钻井液密度窗口预测技术及工程应用. 石油钻采工艺. 2019(05): 573-579 .
    37. SUN Jin,WU Shiguo,DENG Jingen,LIN Hai,ZHANG Hanyu,WANG Jiliang,GAO Jinwei. Numerical Simulation of Mechanical Compaction of Deepwater Shallow Sediments. Journal of Ocean University of China. 2018(01): 53-64 .
    38. 张俊成,李忠慧,彭昊,胡尹凌,李志强. 深水环境下钻井面临的难点与解决对策. 山东化工. 2018(14): 104-107 .
    39. 王志伟,陈国明,刘康,张希平,张震宁. 深水旋转控制短节关键结构设计与分析. 石油机械. 2018(06): 52-57 .
    40. 王志远,赵阳,孙宝江,于璟. 深水气井测试管柱内天然气水合物堵塞特征与防治新方法. 天然气工业. 2018(01): 81-88 .
    41. 王志远,于璟,孟文波,张崇,李军,孙宝江,王莉,滕学清,李宁. 深水气井测试管柱内天然气水合物沉积堵塞定量预测. 中国海上油气. 2018(03): 122-131 .
    42. 王志伟,张云腾,陈国明,赵建亭,田雪. 无隔水管钻井液返回管线对接接头设计与分析. 石油机械. 2018(09): 48-52 .
    43. 许定江,练章华,张强,林铁军. 深水钻完井工程设计要点分析. 断块油气田. 2017(01): 131-136 .
    44. 戴文潮,陈志峰,吴玉旺,马兰荣,张国安,邹传元. 深水固井水泥头关键技术研究. 石油机械. 2017(11): 46-49 .
    45. 刘秀全,陈国明,马秀梅,畅元江. 海洋石油981平台动力学仿真教学系统开发. 实验技术与管理. 2017(12): 132-137 .
    46. 阚长宾,杨进,周建良,刘书杰,张思敏,胡南丁,殷启帅. 深水低压井口下入工具结构设计与承载特性分析. 石油科学通报. 2017(02): 279-287 .
    47. 刘秀全,陈国明,畅元江,姬景奇,傅景杰,张浩. 内孤立波作用下深水锚泊平台-隔水管耦合系统动力学特性. 石油学报. 2017(12): 1448-1456 .
    48. 杨进,路保平. 极地冷海钻井技术挑战及关键技术. 石油钻探技术. 2017(05): 1-7 . 本站查看
    49. 林四元,李中,黄熠,陈浩东,杨玉豪,高济稷. 南海文昌区块深部地层旋转切削齿PDC钻头提速技术. 石油钻探技术. 2017(06): 65-69 . 本站查看
    50. 卢静生,李栋梁,何勇,梁德青,熊友明. 天然气水合物开采过程中出砂研究现状. 新能源进展. 2017(05): 394-402 .
    51. 高盛恩,吴晓东,韩国庆,岑学齐. 底水油藏多分支井见水时间影响因素. 油气地质与采收率. 2016(03): 116-119+126 .
    52. 高德利,朱旺喜,李军,张俊文,孟庆峰. 深水油气工程科学问题与技术瓶颈——第147期双清论坛学术综述. 中国基础科学. 2016(03): 1-6 .
    53. 赵苏文,黄小龙,熊爱江,孙子刚,赵维青. 水下释放塞注水泥工艺关键技术. 石油钻探技术. 2015(06): 54-58 . 本站查看

    Other cited types(32)

Catalog

    Article Metrics

    Article views (171) PDF downloads (90) Cited by(85)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return