XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea [J]. Petroleum Drilling Techniques,2023, 51(6):18-24. DOI: 10.11911/syztjs.2023052
Citation: XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea [J]. Petroleum Drilling Techniques,2023, 51(6):18-24. DOI: 10.11911/syztjs.2023052

Determination of Formation Fracture Pressure under High Temperature and High Pressure in Deep Water of the South China Sea

More Information
  • Received Date: August 21, 2022
  • Revised Date: May 24, 2023
  • Available Online: August 24, 2023
  • The deepwater strata in the northern South China Sea exhibit a high degree of under-compaction, weak cementation, low pressure-bearing capacity, and other mechanical characteristics. At the same time, due to the existence of a temperature field, the heat exchange between the formation and drilling fluid will produce an additional stress field, which will lead to lost circulation in the process of deepwater drilling and seriously affect the drilling efficiency and cementing quality. Therefore, it is urgent to clarify the influence of the temperature field on the additional stress. On the basis of elasticity, the numerical simulation method was used in this paper to establish an analytical model for periborehole stress with temperature considered. According to the existing formation fracture pressure model, the dynamic change law of formation fracture pressure in the deepwater environment of the South China Sea was determined by comprehensively considering the influence of temperature and time. The research results showed that a temperature change of the borehole wall and formation along with additional thermal stress gradually increased with the increase in the cycle time of the drilling fluid. Further, the maximum radial thermal stress was at a certain distance from the axis of the borehole, and the maximum tangential stress and the maximum vertical stress were at the borehole wall. When the temperature of the borehole wall decreased, the contraction of the borehole wall produced tensile stress and the periborehole stress decreased; the tangential stress and vertical stress decreased the most at the borehole wall, and the radial stress decreased the most at 1.65 times of the hole radius from the borehole axis. The deviation of fracture pressure considering the influence of temperature change was much lower than when not considering it. The research results show that temperature change has an impact on periborehole stress, and considering the influence of temperature can improve the prediction accuracy of formation fracture pressure, thus improving the prediction accuracy of the safety density window of the drilling fluid. This research can provide theoretical guidance for safe and efficient drilling in deepwater in the South China Sea.

  • [1]
    潘继平,金之均. 中国油气资源潜力及勘探战略[J]. 石油学报,2004,25(2):1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001

    PAN Jiping, JIN Zhijun. Potentials of petroleum resources and exploration strategy in China[J]. Acta Petrolei Sinica, 2004, 25(2): 1–6. doi: 10.3321/j.issn:0253-2697.2004.02.001
    [2]
    孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术,2015,43(4):1–6.

    SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–6.
    [3]
    李中,方满宗,李磊. 南海西部深水钻井实践[J]. 石油钻采工艺,2015,37(1):92–95.

    LI Zhong, FANG Manzong, LI Lei. Drilling practices of deepwater well in West of South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 92–95.
    [4]
    SUN Qiliang, WU Shiguo, CARTWRIGHT J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315/316/317/318: 1–14. doi: 10.1016/j.margeo.2012.05.003
    [5]
    方满宗,刘和兴,刘智勤,等. 南海西部深水高温高压钻井液技术研究与应用[J]. 中国海上油气,2017,29(1):89–94.

    FANG Manzong, LIU Hexing, LIU Zhiqin, et al. Research and applications of deep water HTHP drilling fluid in western South China Sea[J]. China Offshore Oil and Gas, 2017, 29(1): 89–94.
    [6]
    黄熠,杨进,王尔钧,等. 南海超高温高压气井裸眼完井测试关键技术[J]. 石油钻采工艺,2020,42(2):150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005

    HUANG Yi, YANG Jin, WANG Erjun, et al. Key technologies for the open hole completion testing of ultrahigh temperature and high pressure gas wells in the South China Sea[J]. Oil Drilling & Production Technology, 2020, 42(2): 150–155. doi: 10.12358/j.issn.1001-5620.2021.04.005
    [7]
    陈建国,邓金根,袁俊亮,等. 页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J]. 岩石力学与工程学报,2015,34(6):1101–1105.

    CHEN Jianguo, DENG Jingen, YUAN Junliang, et al. Determination of fracture toughness of modes I and II of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering., 2015, 34(6): 1101–1105.
    [8]
    高永德,董洪铎,胡益涛,等. 深水高温高压井钻井液当量循环密度预测模型及应用[J]. 特种油气藏,2022,29(3):138–143.

    GAO Yongde, DONG Hongduo, HU Yitao, et al. Prediction model of equivalent circulating density of drilling fluid in deep HPHT wells and its application[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 138–143.
    [9]
    李中,陈浩东,刘和兴,等. 深水窄密度窗口地层封堵承压钻井液技术[J]. 钻井液与完井液,2021,38(4):428–434.

    LI Zhong, CHEN Haodong, LIU Hexing, et al. Drilling fluid technology for plugging and strengthening formations with narrow mud weight windows in deep water drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 428–434.
    [10]
    王磊. 基于瞬态热流固耦合的钻井井壁稳定性分析[J]. 断块油气田,2023,30(2):331–336.

    WANG Lei. Wellbore stability analysis in drilling process based on transient thermo-fluid-solid coupling model[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 331–336.
    [11]
    HUBBERT M K, WILLIS D G. Mechanics of hydraulic fractur-ing[J]. Transactions of the AIME, 1957, 210(1): 153–168.
    [12]
    YUAN Junliang, ZHOU Jianliang, LIU Shujie, et al. An improved fracability-evaluation method for shale reservoirs based on new fracture toughness-prediction models[J]. SPE Journal, 2017, 22(5): 1704–1713. doi: 10.2118/185963-PA
    [13]
    EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10): 1353–1360. doi: 10.2118/2163-PA
    [14]
    ANDERSON R A, INGRAM D S, ZANIER A M. Determining fracture pressure gradients from well logs[J]. Journal of Petroleum Technology, 1973, 25(11): 1259–1268. doi: 10.2118/4135-PA
    [15]
    DAINES S R. The use of seismic data in the preparation of wells prognoses for wildcat wells[R]. SPE 10014, 1982.
    [16]
    吴江,李炎军,张万栋,等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63–68.

    WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP Horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63–68.
    [17]
    LEE S, REILLY J, LOWE R, et al. Accurate pore pressure and fracture pressure predictions using seismic velocities: an aid to deep water exploration and drilling design[R]. SEG-1997-2013, 1997.
    [18]
    刘玉石,周煜辉,黄克累. 井眼温度变化对井壁稳定的影响[J]. 石油钻采工艺,1996,18(4):1–4.

    LIU Yushi, ZHOU Yuhui, HUANG Kelei. Temperature of borehole effect on well wall wtability[J]. Oil Drilling & Production Technology, 1996, 18(4): 1–4.
    [19]
    罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8–12.

    LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8–12.
    [20]
    ROCHA L A S, FALCÃO J L, GONÇALVES C J C, et al. Fracture pressure gradient in deepwater[R]. SPE 88011, 2004.
    [21]
    李嗣贵,邓金根,蔚宝华,等. 高温井地层破裂压力计算技术[J]. 岩石力学与工程学报,2005(增刊2):5669–5673.

    LI Sigui, DENG Jingen, YU Baohua, et al. Formation fracture pressure calculation in high temperatures wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(supplement2): 5669–5673.
    [22]
    邓金根,刘杨,蔚宝华,等. 高温高压地层破裂压力预测方法[J]. 石油钻探技术,2009,37(5):43–46.

    DENG Jingen, LIU Yang, YU Baohua, et al. Formation fracture pressure prediction method in high temperature and high pressure formations[J]. Petroleum Drilling Techniques, 2009, 37(5): 43–46.
    [23]
    ORIJI A B, OGBONNA J F, A new fracture gradient prediction technique that shows good results in Gulf of Guinea wells[R]. SPE 161209, 2012.
    [24]
    田波,周建良,刘正礼,等. 南海深水探井破裂压力计算模型研究[J]. 化学工程与装备,2014(11):40–43.

    TIAN Bo, ZHOU Jianliang, LIU Zhengli, et al. Study on fracture pressure calculation model of South China Sea deepwater exploration wells[J]. Chemical Engineering & Equipment, 2014(11): 40–43.
    [25]
    KINIK K, WOJTANOWICZ A K, GUMUS F, Temperature-induced uncertainty of the effective fracture pressures: assessment and control[R]. SPE 170316, 2014.
    [26]
    贾利春,陈东,黄兵. 温度对岩石力学特性及井壁稳定性的影响[J]. 钻采工艺,2017,40(5):15–18.

    JIA Lichun, CHEN Dong, HUANG Bing. Effects of temperature on rocks mechanics and wellbore stability[J]. Drilling & Production Technology, 2017, 40(5): 15–18.
    [27]
    曹文科,邓金根,谭强,等. 深水钻井热交换作用下的井壁稳定性分析[J]. 中国安全生产科学技术,2017,13(6):53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008

    CAO Wenke, DENG Jingen, TAN Qiang, et al. Analysis on stability of borehole under the effect of heat exchange in deepwater drilling[J]. Journal of Safety Science and Technology, 2017, 13(6): 53–57. doi: 10.11731/j.issn.1673-193x.2017.06.008
    [28]
    吴怡,谢仁军,刘书杰,等. 考虑温度效应的高温高压直井井壁稳定性规律[J]. 断块油气田,2019,26(2):253–256. doi: 10.6056/dkyqt201902025

    WU Yi, XIE Renjun, LIU Shujie, et al. Wellbore stability rule of high temperature and high pressure vertical well considering temperature effect[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 253–256. doi: 10.6056/dkyqt201902025
    [29]
    AHMED S A, MAHMOUD A A, ELKATATNY S, et al. Prediction of pore and fracture pressures using support vector machine[R]. IPTC 19523, 2019.
    [30]
    徐芝纶. 弹性力学: 上册[M]. 4版. 北京: 高等教育出版社, 2006.

    XU Zhilun. Elasticity mechanics: volume 1[M]. 4th ed. Beijing: Higher Education Press, 2006.
    [31]
    李忠慧,赵毅,楼一珊,等. 海洋深水井钻井过程中井筒温度的变化规律[J]. 天然气工业,2019,39(10):88–94.

    LI Zhonghui, ZHAO Yi, LOU Yishan, et al. Changing laws of wellbore temperature during offshore deepwater well drilling.[J]. Natural Gas Industry, 2019, 39(10): 88–94.
  • Related Articles

    [1]ZHANG Guilin, ZHANG Xiaolin. Research and On-Site Application of “Stable Fluid Volume” Pressure Control Drilling Technology[J]. Petroleum Drilling Techniques, 2024, 52(6): 16-22. DOI: 10.11911/syztjs.2024115
    [2]JI Guodong, CHEN Changchang, GUO Jianhua, XIA Lianbin, LIU Yongwang, SUN Yuqi. Research on Vibration Reduction, Energy Enhancement, and Acceleration Methods for Drilling Strings of 10 000-Meter Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 100-107. DOI: 10.11911/syztjs.2024038
    [3]CAI Mingjie, LUO Xin, CHEN Lili, HE Mingmin, PENG Hao, HE Bing. Ultra-Large Borehole Drilling Technologies of 10 000-Meter Deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2): 87-92. DOI: 10.11911/syztjs.2024030
    [4]XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
    [5]ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065
    [6]ZHU Linqi, ZHANG Chong, HU Jia, WEI Yang, GUO Cong. An NMR Logging Permeability Evaluation Method Based on the Representative Elementary Volume Model[J]. Petroleum Drilling Techniques, 2016, 44(4): 120-126. DOI: 10.11911/syztjs.201604021
    [7]Zhao Lei. Cable Conveying and Releasing Logging Meter in Complicated Horizontal Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2015, 43(6): 66-69. DOI: 10.11911/syztjs.201506012
    [8]Zhang Guilin. "Liquid Volume Stable" Managed Pressure Drilling Method[J]. Petroleum Drilling Techniques, 2013, 41(4): 54-58. DOI: 10.3969/j.issn.1001-0890.2013.04.012
    [9]Peng Yuan, Yao Xiao, Guo Yingying, Huang Lei, He Yuxin. Development of Measuring Instrument for Evaluating Volume Stability of HTHP Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(4): 115-118. DOI: 10.3969/j.issn.1001-0890.2012.04.023
  • Cited by

    Periodical cited type(19)

    1. 苏乐. 植物油类润滑剂改性方法研究进展. 化学工程师. 2024(05): 85-88+116 .
    2. 金军斌,董晓强,王伟吉,张杜杰. 塔里木盆地深部寒武系复杂地层钻井液技术. 石油钻探技术. 2024(02): 165-173 . 本站查看
    3. 宋兆辉. 高性能水基钻井液处理剂研究进展及发展趋势. 化学通报. 2024(07): 831-837 .
    4. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    5. 王凯,张建卿,李晓明,王伟良,王清臣,韩成福,朱明明. 水基钻井液润滑剂研究进展与展望. 油田化学. 2023(01): 149-158 .
    6. 刘胜,吴宇,由福昌. 钻井液润滑性能评价方法研究进展. 实验技术与管理. 2023(06): 18-29 .
    7. 金军斌,高书阳,陈晓飞. 帅页3-7HF页岩油小井眼水平井水基钻井液技术. 钻井液与完井液. 2023(03): 349-355 .
    8. 宁新军,姬文钰,潘谦宏,都伟超,刘雄雄. 水基钻井液用环保型润滑剂的研究综述. 化工技术与开发. 2023(08): 28-32 .
    9. 侯彬彬,董丽娜,高利军,平园园,段涛涛. 环保型钻井液液体润滑剂研究进展. 化学工程师. 2023(08): 88-92 .
    10. 王中华. 2017~2021年国内钻井液处理剂研究进展. 中外能源. 2022(03): 31-42 .
    11. 田逢军,王运功,陈琪,陶海君,王忠斌. 环保型无荧光水基钻井液润滑剂的研究与应用. 化学工程师. 2022(07): 55-58+50 .
    12. 薛森,狄明利,夏小春,曾祥聪,汪国辉. 钻井液用极压润滑剂PF-EXLUBE的开发及应用. 海洋石油. 2022(02): 103-108 .
    13. 周启成,梁应红,单海霞,黄桃,国安平,王俊祥. 抗高温高密度生物质钻井液体系研究及应用. 石油钻探技术. 2022(06): 78-84 . 本站查看
    14. 王宗轮,孙金声,刘敬平,吕开河,邵子桦,张宪法. 耐高温高盐钻井液润滑剂的研制与性能评价. 钻井液与完井液. 2022(05): 538-544 .
    15. 吴雄军,林永学,金军斌,李大奇,刘珂. 川西低渗气藏井壁修补强化钻井液技术. 断块油气田. 2021(02): 269-273 .
    16. 魏佳怡,李月红,于文婧,高艳,吴雪,刘雄雄,张洁. 环保型水基钻井液润滑剂的研究进展. 化工技术与开发. 2021(06): 36-40 .
    17. 袁俊洲,乔良. 机械设备用节能环保润滑油的制备及性能评价. 化学与粘合. 2021(05): 392-395 .
    18. 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用. 断块油气田. 2021(06): 761-764 .
    19. 李公让,王承俊. 极性吸附钻井液润滑剂的研究进展与发展趋势. 钻井液与完井液. 2020(05): 541-549 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (245) PDF downloads (98) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return