WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
Citation: WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141

Development and Testing of a Portable Acoustic Logging System on Cuttings

More Information
  • Received Date: June 29, 2020
  • Revised Date: October 18, 2020
  • Available Online: October 22, 2020
  • In order to measure the real-time acoustic velocity in the formation while drilling, a portable acoustic logging system on cuttings with high precision was developed based on the research of acoustic logging on cuttings. In the design of this logging system, integrated circuit of pulse generator and oscilloscope was adopted. In addition, software functioning as oscilloscope that could quickly read and store waveform data was studied for this system. By using the ultrasonic transmission method, an ultrasonic probe was used to emit ultrasonic waves with 1 MHz frequency to measure the P-wave velocity and S-wave velocity of the acoustic wave passing through cuttings samples. Results comparisons were conducted on both the laboratory test and the dipole acoustic logging in actual drilling. The results showed that the accuracy of acoustic velocity measurement was more than 98.0%, and the consistency of acoustic logging data of cuttings and wireline acoustic data was greater than 80.0%. This system could not only be used to monitor abnormal formation pressure while drilling, but also to evaluate rock brittleness, compressibility, drillability and wellbore stability in real time.
  • [1]
    王志战. 一体化、智能化时代的录井技术发展方向探讨[J]. 录井工程, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    WANG Zhizhan. Discussion on the development direction of mud logging technology in the era of integration and intellectualiza-tion[J]. Mud Logging Engineering, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001
    [2]
    王大勋,刘洪,韩松,等. 深部岩石力学与深井钻井技术研究[J]. 钻采工艺, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003

    WANG Daxun, LIU Hong, HAN Song, et al. Deep rock mechanics and deep or ultra-deep well drilling technology[J]. Drilling & Production Technology, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003
    [3]
    王秀明,张海澜,何晓,等. 声波测井中的物理问题[J]. 物理, 2011, 40(2): 79–87.

    WANG Xiuming, ZHANG Hailan, HE Xiao, et al. Physical problems in acoustic logging[J]. Physics, 2011, 40(2): 79–87.
    [4]
    TANG X M, ZHENG Y, PATTERSON D. Processing array acoustic logging data to image near-borehole geological structures[J]. Geophysics, 2007, 72(2): E87–E97. doi: 10.1190/1.2435083
    [5]
    MARSALA A F, ZAUSA F, MARTERA M D, et al. Sonic while drilling: have you thought about cuttings?[J]. SPE Formation Evaluation, 1997, 12(2): 77–84. doi: 10.2118/30545-PA
    [6]
    MARSALA A F, BRIGNOLI M, DEL GAUDIO L, et al. Water based drilling fluid evaluation: acoustic on cuttings reveals geomechanical modifications induced on shale formations[R]. OMC-2001-044, 2001.
    [7]
    葛洪魁,宋丽莉,林英松,等. 岩屑波速及微硬度测试的初步研究[J]. 石油钻探技术, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    GE Hongkui, SONG Lili, LIN Yingsong, et al. Primary study on testing of cuttings’ acoustic velocity and micro-hardness[J]. Petroleum Drilling Techniques, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001
    [8]
    邹德永,程远方,刘洪祺. 岩屑声波法评价岩石可钻性的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027

    ZOU Deyong, CHENG Yuanfang, LIU Hongqi. Testing study on rock drillability evaluation by acoustic velocity of cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027
    [9]
    程远方,王京印,沈海超,等. 岩屑声波法地层压力监测技术研究与应用[J]. 中国石油大学学报(自然科学版), 2006, 30(5): 50–52, 66.

    CHENG Yuanfang, WANG Jingyin, SHEN Haichao, et al. Technology of formation pressure monitoring by measuring cuttings acoustic velocity[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(5): 50–52, 66.
    [10]
    程远方, 邹德永, 王桂华.岩屑声波波速测量装置: CN03268815.6[P]. 2004-09-01.

    CHENG Yuanfang, ZOU Deyong, WANG Guihua. A device for measuring acoustic velocity of cuttings: CN03268815.6[P]. 2004-09-01.
    [11]
    索彧,葛洪魁,王小琼,等. 页岩岩屑高精度波速测量的仪器与方法[J]. 岩土力学, 2018, 39(1): 385–392.

    SUO Yu, GE Hongkui, WANG Xiaoqiong, et al. Instruments and methods with high-precision for wave velocity measurement on shale debris[J]. Rock and Soil Mechanics, 2018, 39(1): 385–392.
    [12]
    李二帅.利用岩屑检测地层岩石力学参数的方法与实验研究[D].成都: 西南石油大学, 2016.

    LI Ershuai. Method and experimental study on rock mechanics parameters detection with cuttings[D]. Chengdu: Southwest Petroleum University, 2016.
    [13]
    路保平,鲍洪志,余夫. 基于流体声速的碳酸盐岩地层孔隙压力求取方法[J]. 石油钻探技术, 2017, 45(3): 1–7.

    LU Baoping, BAO Hongzhi, YU Fu. Aporepressure calculating me-thod for carbonate formations based on fluid velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1–7.
    [14]
    韩丽轩,于保华,胡小平. 功率超声压电换能器阻抗匹配电路参数化设计[J]. 压电与声光, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041

    HAN Lixuan, YU Baohua, HU Xiaoping. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer[J]. Piezoelectrics & Acoustooptics, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041
    [15]
    SY/T 6351—2012 岩样声波特性的实验室测量规范[S].

    SY/T 6351—2012 Specification for measurement of rock acoustic properties in laboratory[S].
    [16]
    席鹏飞,杨明合,郭王恒,等. 基于声波时差数据波动性识别异常压实地层的方法[J]. 石油钻探技术, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

    XI Pengfei, YANG Minghe, GUO Wangheng, et al. A method for identifying abnormally compacted strata based on the fluctuation of interval transit time data[J]. Petroleum Drilling Techniques, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

Catalog

    Article Metrics

    Article views (934) PDF downloads (125) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return