LIU Yongwang, LI Kun, GUAN Zhichuan, et al. Research on the method of improving ROP and designing drill bits to mitigate drillability of bottomhole rocks [J]. Petroleum Drilling Techniques, 2024, 52(3):11-20. DOI: 10.11911/syztjs.2024003
Citation: LIU Yongwang, LI Kun, GUAN Zhichuan, et al. Research on the method of improving ROP and designing drill bits to mitigate drillability of bottomhole rocks [J]. Petroleum Drilling Techniques, 2024, 52(3):11-20. DOI: 10.11911/syztjs.2024003

Research on the Method of Improving ROP and Designing Drill Bits to Mitigate Drillability of Bottomhole Rocks

More Information
  • Received Date: November 30, 2023
  • Revised Date: February 19, 2024
  • Available Online: May 31, 2024
  • In order to solve the problems of low rock breaking efficiency of drill bits and low rate of penetration (ROP) caused by great hardness, strong abrasiveness, high in-situ stress, and poor drillability of deep formation rocks, a new method of improving ROP was put forward to release the in-situ stress and reduce the drilling resistance of bottomhole rocks based on the analysis of existing speed increase technologies. Based on this idea, seven new types of drill bits were designed: bottomhole stress-induced unloading drill bits, concentrated energy attack-type unloading bottomhole stress drill bits, differential pressure drill bits, central differential pressure drill bits, drill bits under the joint action of induced unloading and abrasive jet, stairs type drill bits, and coupled self-excited axial impact and induced unloading rock-breaking drill bits. The ROP increase effect of two types of drill bits were verified through laboratory and well-site experiments. The central differential pressure drill bit increased its ROP by 30.01% in laboratory experiments, and the highest ROP increase in well-site experiments was 318.11%. The drill bits under the joint action of induced unloading and abrasive jet increased the ROP of limestone and red sandstone by 59.0% and 336.0% in laboratory experiments, respectively. The proposal of this method and the development of drill bits provide new ways for the ROP increase technology in deep formation with poor drillability.

  • [1]
    马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development-case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
    [2]
    王子源,黄仁山,何金南. 中国油气钻井科技史述略[J]. 石油钻探技术,1998,26(2):10–15.

    WANG Ziyuan, HUANG Renshan, HE Jinnan. The history of oil and gas drilling technology in China[J]. Petroleum Drilling Techniques, 1998, 26(2): 10–15.
    [3]
    杨智光. 大庆油田钻井完井技术新进展及发展建议[J]. 石油钻探技术,2016,44(6):1–10. doi: 10.11911/syztjs.201606001

    YANG Zhiguang. The latest proposals for the advancement and development of drilling and completion technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1–10. doi: 10.11911/syztjs.201606001
    [4]
    陈宗琦,刘景涛,陈修平. 顺北油气田古生界钻井提速技术现状与发展建议[J]. 石油钻探技术,2023,51(2):1–6.

    CHEN Zongqi, LIU Jingtao, CHEN Xiuping. Up-to-date ROP improvement technologies for drilling in the Paleozoic of Shunbei Oil & Gas Field and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2023, 51(2): 1–6.
    [5]
    廖腾彦,余丽彬,李俊胜. 吉木萨尔致密砂岩油藏工厂化水平井钻井技术[J]. 石油钻探技术,2014,42(6):30–33.

    LIAO Tengyan, YU Libin, LI Junsheng. A factory-like drilling technology of horizontal wells for tight sandstone reservoirs in the Jimusaer Area[J]. Petroleum Drilling Techniques, 2014, 42(6): 30–33.
    [6]
    赵云良,赵爽之,闫森. 金刚石烧结体(PCD与PDC)的发展概况(一)[J]. 超硬材料工程,2013,25(4):24–28.

    ZHAO Yunliang, ZHAO Shuangzhi, YAN Sen. The development of sintered polycrystalline diamond compact (PCD & PDC) (I)[J]. Superhard Material Engineering, 2013, 25(4): 24–28.
    [7]
    赵云良,赵爽之,闫森. 金刚石烧结体(PCD 与 PDC)的发展概况(二)[J]. 超硬材料工程,2013,25(5):42–46.

    ZHAO Yunliang, ZHAO Shuangzhi, YAN Sen. Development of sintered polycrystalline diamond compact (PCD & PDC) (II)[J]. Superhard Material Engineering, 2013, 25(5): 42–46.
    [8]
    赵云良,赵爽之,闫森. 金刚石烧结体(PCD与PDC)的发展概况(三)[J]. 超硬材料工程,2013,25(6):53–56.

    ZHAO Yunliang, ZHAO Shuangzhi, YAN Sen. The development of sintered polycrystalline diamond compact (PCD & PDC) (III)[J]. Superhard Material Engineering, 2013, 25(6): 53–56.
    [9]
    赵云良,赵爽之,闫森. 金刚石烧结体(PCD与PDC)的发展概况(四)[J]. 超硬材料工程,2014,26(1):48–51.

    ZHAO Yunliang, ZHAO Shuangzhi, YAN Sen. The development of sintered polycrystalline diamond compact (PCD & PDC) (IV)[J]. Superhard Material Engineering, 2014, 26(1): 48–51.
    [10]
    赵云良,赵爽之,闫森. 金刚石烧结体(PCD与PDC)的发展概况(五)[J]. 超硬材料工程,2014,26(2):45–49.

    ZHAO Yunliang, ZHAO Shuangzhi, YAN Sen. The development of sintered polycrystalline diamond compact (PCD & PDC) (V)[J]. Superhard Material Engineering, 2014, 26(2): 45–49.
    [11]
    左汝强. 国际油气井钻头进展概述(一):Kymera组合式(Hybrid)钻头系列[J]. 探矿工程(岩土钻掘工程),2016,43(1):4–6.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (1): Kymera Hybrid bit[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(1): 4–6.
    [12]
    左汝强. 国际油气井钻头进展概述(二):FuseTek融合钻头与Pexus组合钻头[J]. 探矿工程(岩土钻掘工程),2016,43(2):1–4.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (2): FuseTek bit and Pexus hybrid bit[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(2): 1–4.
    [13]
    左汝强. 国际油气井钻头进展概述(三):PDC钻头发展进程及当今态势(上)[J]. 探矿工程(岩土钻掘工程),2016,43(3):1–8.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (3): PDC bits progress and present trend (I)[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(3): 1–8.
    [14]
    左汝强. 国际油气井钻头进展概述(四):PDC钻头发展进程及当今态势(下)[J]. 探矿工程(岩土钻掘工程),2016,43(4):40–48.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (4): PDC bits progress and present trend (Ⅱ)[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(4): 40–48.
    [15]
    毛伟. 高压喷射钻井技术应用及经济性评价[J]. 断块油气田,2019,26(2):261–263. doi: 10.6056/dkyqt20190202

    MAO Wei. Application and economic appraisal of high-pressure jet drilling technique[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 261–263. doi: 10.6056/dkyqt20190202
    [16]
    管志川,陈庭根. 钻井工程理论与技术[M]. 2版. 东营:中国石油大学出版社,2017:124-142.

    GUAN Zhichuan, CHEN Tinggen. Drilling engineering theory and technology[M]. 2nd ed. Dongying: China University of Petroleum Press, 2017: 124-142.
    [17]
    管志川,魏文忠,刘永旺. 井下钻柱减振增压装置:CN201010119842.0[P]. 2010-07-28.

    GUAN Zhichuan, WEI Wenzhong, LIU Yongwang. Downhole drill string vibration reduction and pressurization device: CN201010119842.0[P]. 2010-07-28.
    [18]
    管志川,刘永旺,史玉才,等. 利用钻压波动提高井底钻井液喷射压力的方法:CN201110101056.2[P]. 2011-09-14.

    GUAN Zhichuan, LIU Yongwang, SHI Yucai, et al. Method of increasing bottom hole drilling fluid injection pressure by using WOB fluctuation: CN201110101056.2[P]. 2011-09-14.
    [19]
    管志川,刘永旺. 一种用于井下增压器的超高压钻头流道系统及其构造方法:CN201110171384. X[P]. 2012-03-21.

    GUAN Zhichuan, LIU Yongwang. An ultra-high pressure bit runner system for downhole supercharger and its construction method: CN201110171384. X[P]. 2012-03-21.
    [20]
    管志川,刘永旺,魏文忠,等. 井下增压提速系统:CN201210207320.5[P]. 2012-10-03.

    GUAN Zhichuan, LIU Yongwang, WEI Wenzhong, et al. Downhole pressure and speed increasing system: CN201210207320.5[P]. 2012-10-03.
    [21]
    刘永旺,管志川. 一种提高油气井钻井速度的装置:CN201410153115.4[P]. 2014-07-02.

    LIU Yongwang, GUAN Zhichuan. A device for improving drilling speed of oil and gas well: CN201410153115.4[P]. 2014-07-02.
    [22]
    刘永旺,管志川,史玉才,等. 基于钻柱振动的井底环空钻井液降压装置及方法:CN201811401209.3[P]. 2019-04-02.

    LIU Yongwang, GUAN Zhichuan, SHI Yucai, et al. Device and method for reducing pressure of bottom hole annular drilling fluid based on drill string vibration: CN201811401209.3[P]. 2019-04-02.
    [23]
    刘永旺,管志川,张洪宁,等. 一种转化钻柱振动能量的井底高压喷射钻井装置[J]. 天然气工业,2017,37(9):91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012

    LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. A downhole high-pressure jet drilling device transforming drilling string vibration energy[J]. Natural Gas Industry, 2017, 37(9): 91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012
    [24]
    刘永旺,管志川,张洪宁,等. 基于钻柱振动的井下提速技术研究现状及展望[J]. 中国海上油气,2017,29(4):131–137.

    LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. Research status and prospect of ROP-enhancing technology based on drill string vibration[J]. China Offshore Oil and Gas, 2017, 29(4): 131–137.
    [25]
    李明谦,黄继庆. 螺杆钻具的应用现状及未来发展建议[J]. 石油机械,2006,34(5):73–76.

    LI Mingqian, HUANG Jiqing. Application status and future development suggestions of screw drill[J]. China Petroleum Machinery, 2006, 34(5): 73–76.
    [26]
    张东海,熊立新,刘晏华. 螺杆钻具的应用现状及发展方向[J]. 断块油气田,1999,6(4):47–50. doi: 10.3969/j.issn.1005-8907.1999.04.014

    ZHANG Donghai, XIONG Lixin, LIU Yanhua. The applied status and development trend of dyna-drill[J]. Fault-Block Oil & Gas Field, 1999, 6(4): 47–50. doi: 10.3969/j.issn.1005-8907.1999.04.014
    [27]
    李昱,张海滨. 液动冲击旋转钻井技术及其发展趋势[J]. 石油矿场机械,2006,35(3):107–109. doi: 10.3969/j.issn.1001-3482.2006.03.031

    LI Yu, ZHANG Haibin. The impact-rotary drilling technique and its tendency[J]. Oil Field Equipment, 2006, 35(3): 107–109. doi: 10.3969/j.issn.1001-3482.2006.03.031
    [28]
    菅志军,张玉霖,王茂森,等. 冲击旋转钻进技术新发展[J]. 地质与勘探,2003,39(3):78–83. doi: 10.3969/j.issn.0495-5331.2003.03.017

    JIAN Zhijun, ZHANG Yulin, WANG Maosen, et al. The new development of percussion-rotary drilling technique[J]. Geology and Exploration, 2003, 39(3): 78–83. doi: 10.3969/j.issn.0495-5331.2003.03.017
    [29]
    张云连. 冲击旋转钻井工具的发展现状及应用研究[J]. 石油矿场机械,2001,30(5):12–14. doi: 10.3969/j.issn.1001-3482.2001.05.004

    ZHANG Yunlian. The development and application of rotary percussion drilling tool[J]. Oil Field Equipment, 2001, 30(5): 12–14. doi: 10.3969/j.issn.1001-3482.2001.05.004
    [30]
    周燕,安庆宝,蔡文军,等. SLTIT型扭转冲击钻井提速工具[J]. 石油机械,2012,40(2):15–17.

    ZHOU Yan, AN Qingbao, CAI Wenjun, et al. Model SLTIT torsional impact drilling speedup tool[J]. China Petroleum Machinery, 2012, 40(2): 15–17.
    [31]
    张海山,葛俊瑞,杨进,等. 扭力冲击器在海上深部地层的提速效果评价[J]. 断块油气田,2014,21(2):249–251.

    ZHANG Haishan, GE Junrui, YANG Jin, et al. Effect evaluation of torsion impactor for increasing ROP in offshore deep formation[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 249–251.
    [32]
    田家林,朱永豪,吴纯明,等. 新型扭力冲击器的运动特性研究[J]. 机械设计与制造,2016(3):75–78. doi: 10.3969/j.issn.1001-3997.2016.03.021

    TIAN Jialin, ZHU Yonghao, WU Chunming, et al. Kinetic characteristic research of a new torque oscillator[J]. Machinery Design & Manufacture, 2016(3): 75–78. doi: 10.3969/j.issn.1001-3997.2016.03.021
    [33]
    柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术,2016,44(5):10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.
    [34]
    田家林,张堂佳,程文明,等. 新型恒扭矩工具动力学模型与降黏机理研究[J]. 振动与冲击,2018,37(19):89–96.

    TIAN Jialin, ZHANG Tangjia, CHENG Wenming, et al. Dynamic model and Sticky Slip reduction mechanism of a new constant torque tool[J]. Journal of Vibration and Shock, 2018, 37(19): 89–96.
    [35]
    DEPOUHON A, DETOURNAY E. Instability regimes and self-excited vibrations in deep drilling systems[J]. Journal of Sound and Vibration, 2014, 333(7): 2019–2039. doi: 10.1016/j.jsv.2013.10.005
    [36]
    GILLAN C, BOONE S, KOSTIUK G, et al. Applying precision drill pipe rotation and oscillation to slide drilling problems[R]. SPE 118656, 2009.
    [37]
    DE LAI A J. Diamond compact abrasive: US 3141746[P]. 1964-07-21.
    [38]
    BOVENKERK H P, GIGL P D. Temperature resistant abrasive compact and method for making same: US4224380[P]. 1980-09-23.
    [39]
    SHAMBURGER J. Method and apparatus for selectively leaching portions of PDC cutters already mounted in drill bits: US 7757792 B2[P]. 2010-07-20.
    [40]
    ZHAN Guodong, ROTHROCK W R, DHALL P W, et al. Systems and methods for vapor pressure leaching polycrystalline diamond cutter elements: US 9156136 B2[P]. 2015-10-13.
    [41]
    Jeffrey B L. Method to improve efficiency of PDC leaching: US 165475 A1[P]. 2014-06-19.
    [42]
    GILLEYLEN R, ZHAN Guodong, DONALD S, et al. Apparatus and methods for high pressure leaching of polycrystalline diamond cutter elements: US 9981362 B2[P]. 2018-05-29.
    [43]
    GRIFFO A, KESHAVAN M K. Manufacture of thermally stable cutting elements: US 8002859 B2[P]. 2011-08-23.
    [44]
    LI Qiang, ZHAN Guodong, LI Dong, et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Scientific Reports, 2020, 10(1): 22020. doi: 10.1038/s41598-020-79167-4
    [45]
    刘进,贺端威. 超硬高韧微米颗粒聚晶金刚石块材的超高压制备[J]. 金刚石与磨料磨具工程,2018,38(6):1–6.

    LIU Jin, HE Duanwei. Sintering super-strong micro-grained polycrystalline diamond compacts under ultrahigh pressure[J]. Diamond & Abrasives Engineering, 2018, 38(6): 1–6.
    [46]
    BERTAGNOLLI K E, QIAN Jiang, Wiggins J, et al. Polycrystalline diamond compacts: US 9932274 B2[P]. 2018-04-03.
    [47]
    KAWAMURA H, OHFUJI H. Nano-polycrystalline diamond synthesized through the decomposition of stearic acid[J]. High Pressure Research, 2020, 40(1): 162–174. doi: 10.1080/08957959.2019.1708910
    [48]
    范文捷. PCD层与WC-Co基体之间界面结构与性能的研究[D]. 郑州:郑州大学,2006.

    FAN Wenjie. Study on the interface structure and properties between PCD layer and WC Co matrix[D]. Zhengzhou: Zhengzhou University, 2006.
    [49]
    杨雄文,彭齐,冯枭,等. 基体界面形状对PDC残余应力数值模拟研究[J]. 石油机械,2023,51(7):82–88.

    YANG Xiongwen, PENG Qi, FENG Xiao, et al. Numerical simulation study on the effect of matrix interface shape on residual stress in PDC[J]. China Petroleum Machinery, 2023, 51(7): 82–88.
    [50]
    王志明,方小红,孙武成,等. 烧结压力对低液相Fe基预合金钻头胎体性能的影响[J]. 金刚石与磨料磨具工程,2023,43(2):151–160.

    WANG Zhiming, FANG Xiaohong, SUN Wucheng, et al. Effect of sintering pressure on the performance of Fe-based pre-alloyed bit matrix with low liquid phase[J]. Diamond & Abrasives Engineering, 2023, 43(2): 151–160.
    [51]
    解珅. 钢体PDC钻头表面强化工艺研究[J]. 西部探矿工程,2018,30(9):80-81.

    XIE Shen. Research on surface strengthening technology of steel PDC drill bits[J]. West-China Exploration Engineering, 2018, 30(9): 80-81.
    [52]
    胡可,谢焕文,刘辛,等. 铸造碳化钨颗粒增强PDC钻头胎体的三体磨损行为[J]. 中国有色金属学报,2020,30(2):364–371. doi: 10.11817/j.ysxb.1004.0609.2020-36358

    HU Ke, XIE Huanwen, LIU Xin, et al. Three-body abrasive wear behavior of PDC drill bit matrix reinforced by cast Tungsten carbide particles[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(2): 364–371. doi: 10.11817/j.ysxb.1004.0609.2020-36358
    [53]
    常思,刘宝昌,戴文昊,等. 多元纳米颗粒强化WC–青铜基金刚石钻头胎体材料[J]. 金刚石与磨料磨具工程,2022,42(3):317–324.

    CHANG Si, LIU Baochang, DAI Wenhao, et al. Properties of WC-bronze based matrix material for diamond bit reinforced by multielement nanoparticles[J]. Diamond & Abrasives Engineering, 2022, 42(3): 317–324.
    [54]
    彭齐,周英操,周波,等. 凸脊型非平面齿PDC钻头的研制与现场试验[J]. 石油钻探技术,2020,48(2):49–55. doi: 10.11911/syztjs.2020035

    PENG Qi, ZHOU Yingcao, ZHOU Bo, et al. Development and field test of a non-planar cutter PDC bit with convex ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49–55. doi: 10.11911/syztjs.2020035
    [55]
    颜辉,李宁,阳君奇,等. 砾石层异型齿PDC钻头的设计及现场试验[J]. 钻采工艺,2023,46(3):9–15. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.02

    YAN Hui, LI Ning, YANG Junqi, et al. Design and field test of special-shaped cutter PDC bit in gravel layer[J]. Drilling & Production Technology, 2023, 46(3): 9–15. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.02
    [56]
    徐金凤. PDC钻头4D切削齿技术新发展[J]. 石化技术,2019,26(10):79–80. doi: 10.3969/j.issn.1006-0235.2019.10.049

    XU Jinfeng. PDC bit technology evolves to 4D cutters[J]. Petrochemical Industry Technology, 2019, 26(10): 79–80. doi: 10.3969/j.issn.1006-0235.2019.10.049
    [57]
    SLB. Hyper Blade[EB/OL]. [2023-07-10]. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/drilling/bottomhole-assemblies/drill-bits/blade-family-bits/hyperblade-hyperbolic-diamond-element-bit.
    [58]
    SLB. AxeBlade[EB/OL]. (2022-08-04)[2023-07-10]. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/well-construction/drilling/drill-bits/blade-family-bits/axeblade-ridged-diamond-element-bit.
    [59]
    Baker Hughes. Shaped-cutter technology[EB/OL]. [2023-07-10]. https://www.bakerhughes.com/drilling/drill-bits/shapedcutter-technology.
    [60]
    Halliburton. Geometrix™ 4D-shaped cutters[EB/OL]. [2023-07-10]. https://www.halliburton.com/en/products/geometrix-4d-shaped-cutters.
    [61]
    马亚超,陶垒,荣准. PDC钻头布齿技术研究综述[J]. 工程设计学报,2023,30(1):1–12. doi: 10.3785/j.issn.1006-754X.2023.00.006

    MA Yachao, TAO Lei, RONG Zhun. Review of PDC bit cutter arrangement technology[J]. Chinese Journal of Engineering Design, 2023, 30(1): 1–12. doi: 10.3785/j.issn.1006-754X.2023.00.006
    [62]
    SLB. StingBlade[EB/OL]. [2023-07-10]. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/drilling/bottomhole-assemblies/drill-bits/blade-family-bits/stingblade-conical-diamond-element-bit.
    [63]
    Baker Hughes. Kymera Mach 5 hybrid drill bit[EB/OL]. [2023-07-10]. https://www.bakerhughes.com/drilling/drill-bits/hybrid-drill-bits/kymera-mach-5-hybrid-drill-bit.
    [64]
    KALLOO C L, ATTONG D J, BICKRAJ R, et al. A novel design Bl-center bit successfully drills deep exploration well off the East Coast of Trinidad[R]. SPE 27471, 1994.
    [65]
    聂凌. 针对硬地层的单牙轮-PDC双级钻头的破岩特性研究[D]. 成都:西南石油大学,2017.

    NIE Ling. Study on rock breaking characteristics of single cone PDC dual stage bit for hard formation[D]. Chengdu: Southwest Petroleum University, 2017.
    [66]
    郭富城,屈子骁,邵云淏,等. 三牙轮-PDC双级同心钻头设计[J]. 濮阳职业技术学院学报,2019,32(2):77–80.

    GUO Fucheng, QU Zixiao, SHAO Yunhao, et al. Design of three cone PDC two-stage concentric bit[J]. Journal of Puyang Vocational and Technical College, 2019, 32(2): 77–80.
    [67]
    马广军,刘永旺,路保平,等. 一种井底应力诱导卸荷钻头及其提高钻井速度方法:CN202010423341.5[P]. 2020-09-01.

    MA Guangjun, LIU Yongwang, LU Baoping, et al. A bottom hole stress induced unloading bit and its method to improve drilling speed: CN202010423341.5[P]. 2020-09-01.
    [68]
    刘永旺,管志川. 一种具有聚能攻击卸荷井底应力的钻头及钻井方法:CN201911216860.8[P]. 2020-03-24.

    LIU Yongwang, GUAN Zhichuan. A bit with shaped charge attack unloading bottom hole stress and its drilling method: CN201911216860.8[P]. 2020-03-24.
    [69]
    管志川,刘永旺,李敬皎,等. 差压式钻头:CN201510789231. X[P]. 2016-03-30.

    GUAN Zhichuan, LIU Yongwang, LI Jingjiao, et al. Differential pressure drill bit: CN201510789231. X[P]. 2016-03-30.
    [70]
    管志川,刘永旺,呼怀刚,等. 中心差压式钻头:CN201510790611.5[P]. 2016-02-10.

    GUAN Zhichuan, LIU Yongwang, HU Huaigang, et al. Central differential pressure bit: CN201510790611.5[P]. 2016-02-10.
    [71]
    刘永旺,管志川. 一种具有诱导载荷与磨料射流联合作用的钻头及钻井方法:CN201911130628.2[P]. 2020-02-04.

    LIU Yongwang, GUAN Zhichuan. A bit and drilling method with combined action of induced load and abrasive jet: CN201911130628.2[P]. 2020-02-04.
    [72]
    刘永旺,张喆,管志川,等. 一种适合于难钻地层智能钻井的阶梯式钻头及钻井方法:CN202011439245.6[P]. 2021-04-06.

    LIU Yongwang, ZHANG Zhe, GUAN Zhichuan, et al. A stepped bit and drilling method suitable for intelligent drilling in difficult formations: CN202011439245.6[P]. 2021-04-06.
    [73]
    刘永旺,刘笑傲,刘嘉雄,等. 自激轴冲与诱导卸荷耦合破岩钻头及钻井提速方法:CN202110338814.6[P]. 2021-07-13.

    LIU Yongwang, LIU Xiaoao, LIU Jiaxiong, et al. Self excited axial impact and induced unloading coupling rock breaking bit and drilling speed increase method: CN202110338814.6[P]. 2021-07-13.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]SHI Peiming, NI Huafeng, HE Huifeng, SHI Chongdong, LI Luke, ZHANG Yanbing. Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17-23. DOI: 10.11911/syztjs.2024112
    [3]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [4]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [5]JIA Jia, XIA Zhongyue, FENG Lei, LI Jian, WANG Yang. Key Technology of Optimized and Fast Slim Hole Drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64-70. DOI: 10.11911/syztjs.2021110
    [6]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [7]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [8]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [9]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002
    [10]Guo Wenmeng, Dang Donghong, Zhu Zexin, Xu Minghui, Chen Guang, Huang Xia. Cementing Techniques of Mono-Bore Well Completion in Yishan Slope of Ordos Basin[J]. Petroleum Drilling Techniques, 2014, 42(4): 75-78. DOI: 10.3969/j.issn.1001-0890.2014.04.014
  • Cited by

    Periodical cited type(1)

    1. 胡勇,惠栋,杜强,蒋德生,李滔,刘其松,闫静,陈颖莉,李隆新,刘微. 四川盆地中坝气田雷三气藏高效开发及其对中国高含硫气藏开采的意义. 天然气工业. 2024(11): 24-36 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (282) PDF downloads (141) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return