ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094
Citation: ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094

Test Research on Tight Sandstone Wellbore Stability During Gas Drilling

More Information
  • Received Date: June 17, 2022
  • Revised Date: December 13, 2022
  • Available Online: December 06, 2022
  • In light of the energy dissipation principle, the mechanism of wellbore instability in a tight sandstone formation during gas drilling was studied through triaxial compression tests. The results of triaxial compression tests were analyzed, and it was found that the energy evolution process of sandstone includes three stages, i.e., the stable accumulation of elastic energy, the slow accumulation of dissipated energy, and elastic energy release with rapid accumulation of dissipated energy. With the decrease in confining pressure, the limit of dissipated energy required to destroy sandstone structure decreased exponentially, while that of the stored elastic energy declined linearly. As the loading rate was enhanced, the dissipated energy required to destroy the sandstone structure first decreased and then increased, with the appearance of a critical loading rate. The conversion rate of dissipated energy of sandstone was positively correlated with confining pressure and loading rate, and a high conversion rate caused the weakening of cohesion and the strengthening of friction. Too fast gas drilling enlarged the wellbore instability area, this was more distinct when drilling high-pressure formations. Therefore, appropriately reducing the drilling speed while giving sufficient pressure relief time to formations is conducive to maintaining wellbore stability during gas drilling. The research results are of great significance for optimizing gas drilling speed.

  • [1]
    李皋,孟英峰,唐洪明,等. 气体钻井高效开发致密砂岩气藏[J]. 天然气工业,2007,27(7):59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017

    LI Gao, MENG Yingfeng, TANG Hongming, et al. Gas drilling used for efficient development of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2007, 27(7): 59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017
    [2]
    李皋,孟英峰,蒋俊,等. 气体钻井的适应性评价技术[J]. 天然气工业,2009,29(3):57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016

    LI Gao, MENG Yingfeng, JIANG Jun, et al. Evaluation techniques on the adaptability of gas drilling[J]. Natural Gas Industry, 2009, 29(3): 57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016
    [3]
    刘向君,丁乙,罗平亚,等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术,2018,46(1):10–16. doi: 10.11911/syztjs.2018005

    LIU Xiangjun, DING Yi, LUO Pingya, et al. The impact of drilling unloading on wellbore stability of shale formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10–16. doi: 10.11911/syztjs.2018005
    [4]
    吴超,陈勉,金衍. 井壁稳定性实时预测方法[J]. 石油勘探与开发,2008,35(1):80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014

    WU Chao, CHEN Mian, JIN Yan. Real-time prediction method of borehole stability[J]. Petroleum Exploration and Development, 2008, 35(1): 80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014
    [5]
    DING Yi, LUO Pingya, LIU Xiangjun, et al. Wellbore stability model for horizontal wells in shale formations with multiple planes of weakness[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 334–347. doi: 10.1016/j.jngse.2018.01.029
    [6]
    邓金根, 郭东旭, 周建良, 等. 泥页岩井壁应力的力学–化学耦合计算模式及数值求解方法[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2250−2253.

    DENG Jingen, GUO Dongxu, ZHOU Jianliang, et al. Mechanics-chemistry coupling calculation model of borehole stress in shale formation and its numerical solving method[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(supplement1): 2250− 2253.
    [7]
    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Wellbore stability analysis for horizontal wells in shale formations[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 1–8. doi: 10.1016/j.jngse.2016.02.061
    [8]
    卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
    [9]
    张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256–260.

    ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 256–260.
    [10]
    邓媛,何世明,邓祥华,等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术,2020,48(1):26–33. doi: 10.11911/syztjs.2020010

    DENG Yuan, HE Shiming, DENG Xianghua, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26–33. doi: 10.11911/syztjs.2020010
    [11]
    闫睿昶,张宇,吴红玲,等. 巴彦河套盆地临河区块深层井壁失稳钻井液对策[J]. 石油钻采工艺,2022,44(2):168–172.

    YAN Ruichang, ZHANG YU, WU Hongling, et al. Drilling fluid solutions to well instability in deep layers of Linhe Block of the Bayan Hetao Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 168–172.
    [12]
    陈修平,高雷雨,刘景涛,等. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液,2021,38(1):35–41.

    CHEN Xiuping, GAO Leiyu, LIU Jingtao, et al. echanisms of borehole wall destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and measures dealing with the borehole wall collapse[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 35–41.
    [13]
    石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023,51(1):22–33. doi: 10.11911/syztjs.2023005

    SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field [J]. Petroleum Drilling Techniques, 2023, 51(1): 22–33. doi: 10.11911/syztjs.2023005
    [14]
    潘冠昌,杨斌,张浩,等. 超深层碳酸盐岩裂缝面形态与摩擦因数研究[J]. 断块油气田,2022,29(6):794–799.

    PAN Guanchang,YANG Bin,ZHANG Hao,et al. Research on fracture surface morphology and friction coefficient of ultra-deep carbonate rock[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 794–799.
    [15]
    兰凯,熊友明,闫光庆,等. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. 吉林大学学报(地球科学版),2011,41(4):1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031

    LAN Kai, XIONG Youming, YAN Guangqing, et al. Horizontal borehole stability and its influence on well completion optimization in the northeast Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031
    [16]
    刘向君,罗平亚,孟英峰. 地应力场对井眼轨迹设计及稳定性的影响研究[J]. 天然气工业,2004,24(9):57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017

    LIU Xiangjun, LUO Pingya, MENG Yingfeng. Influence of ground stress field on borehole trajectory design and well face stability[J]. Natural Gas Industry, 2004, 24(9): 57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017
    [17]
    EWY R T. Wellbore-stability predictions by use of a modified lade criterion[J]. SPE Drilling & Completion, 1999, 14(2): 85–91.
    [18]
    梁利喜,丁乙,刘向君,等. 硬脆性泥页岩井壁稳定渗流–力化耦合研究[J]. 特种油气藏,2016,23(2):140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034

    LIANG Lixi, DING Yi, LIU Xiangjun, et al. Seepage-mechanochemistry coupling of wellbore stability in hard-brittle shale[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034
    [19]
    FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 209–220.
    [20]
    邓华锋, 王晨玺杰, 李建林, 等. 加载速率对砂岩抗拉强度的影响机制[J]. 岩土力学, 2018, 39(增刊1): 79−88.

    DENG Huafeng, WANG Chenxijie, LI Jianlin, et al. Influence mechanism of loading rate on tensile strength of sandstone[J]. Rock and Soil Mechanics, 2018, 39(supplement 1): 79−88.
    [21]
    吴绵拔. 加载速率对岩石抗压和抗拉强度的影响[J]. 岩土工程学报,1982,4(2):97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010

    WU Mianba. The effect of loading rate on the compressive and tensile strength of rocks[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010
    [22]
    尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2610−2615.

    YIN Xiaotao, GE Xiurun, LI Chunguang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 2610−2615.
    [23]
    谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [24]
    马振乾,姜耀东,李彦伟,等. 加载速率和围压对煤能量演化影响试验研究[J]. 岩土工程学报,2016,38(11):2114–2121. doi: 10.11779/CJGE201611023

    MA Zhenqian, JIANG Yaodong, LI Yanwei, et al. Experimental research on influence of loading rate and confining pressure on energy evolution of coal[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2114–2121. doi: 10.11779/CJGE201611023
    [25]
    张志镇,高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报,2015,34(1):1–11. doi: 10.13722/j.cnki.jrme.2015.01.001

    ZHANG Zhizhen, GAO Feng. Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1–11. doi: 10.13722/j.cnki.jrme.2015.01.001
    [26]
    张黎明,高速,王在泉. 加卸荷条件下灰岩能耗变化规律试验研究[J]. 岩土力学,2013,34(11):3071–3076. doi: 10.16285/j.rsm.2013.11.004

    ZHANG Liming, GAO Su, WANG Zaiquan. Experimental study of energy evolution of limestone under loading and unloading conditions[J]. Rock and Soil Mechanics, 2013, 34(11): 3071–3076. doi: 10.16285/j.rsm.2013.11.004
    [27]
    陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报,2009,28(8):1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    CHEN Weizhong, LYU Senpeng, GUO Xiaohong, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
    [28]
    徐小丽,陈琳,高峰,等. 花岗岩的加载速率效应及能量机制研究[J]. 固体力学学报,2015,36(2):154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008

    XU Xiaoli, CHEN Lin, GAO Feng, et al. Studies on loading rate effects and energy mechanism of granite[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008
    [29]
    姜耀东,李海涛,赵毅鑫,等. 加载速率对能量积聚与耗散的影响[J]. 中国矿业大学学报,2014,43(3):369–373. doi: 10.13247/j.cnki.jcumt.000121

    JIANG Yaodong, LI Haitao, ZHAO Yixin, et al. Effect of loading rate on energy accumulation and dissipation in rocks[J]. Journal of China University of Mining & Technology, 2014, 43(3): 369–373. doi: 10.13247/j.cnki.jcumt.000121
    [30]
    苏国韶,冯夏庭. 基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J]. 岩石力学与工程学报,2005,24(17):3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005

    SU Guoshao, FENG Xiating. Parameter identification of constitutive model for hard rock under high in-situ stress condition using particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005
    [31]
    HAJIABDOLMAJID V, KAISER P K, MARTIN C D. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 731–741. doi: 10.1016/S1365-1609(02)00051-5
    [32]
    DIEDERICHS M S. The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep unneling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082–1116. doi: 10.1139/T07-033
    [33]
    EDELBRO C. Numerical modelling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 398–409. doi: 10.1016/j.tust.2008.11.004
    [34]
    马天寿,陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术,2014,42(5):26–36. doi: 10.11911/syztjs.201405005

    MA Tianshou, CHEN Ping. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26–36. doi: 10.11911/syztjs.201405005
    [35]
    李留伟,吴建军,龙学,等. 川西新场构造地应力分布规律研究及其应用[J]. 天然气工业,2008,28(9):80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025

    LI Liuwei, WU Jianjun, LONG Xue, et al. Research on the distribution laws of tectonic in-site stress in Xinchang structure (West Sichuan Basin) and their applications[J]. Natural Gas Industry, 2008, 28(9): 80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025
    [36]
    刘厚彬,韩旭,张俊,等. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术,2019,47(1):25–31. doi: 10.11911/syztjs.2019004

    LIU Houbin, HAN Xu, ZHANG Jun, et al. Wellbore stability evaluation during gas drilling through low permeability gas reservoirs in western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25–31. doi: 10.11911/syztjs.2019004
  • Related Articles

    [1]XU Xiaokai, ZHAO Weina, ZHANG Jinyan, DONG Jingli, SUN Qingxi, WANG Lei. Recursive Algorithm for Electromagnetic Fields from Magnetic Dipole in Layered Triaxial Anisotropic Medium and Its Application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130-139. DOI: 10.11911/syztjs.2023117
    [2]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [3]NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049
    [4]CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111
    [5]LI Yibo, LI Yongjie. The Development and Testing of a Rapid Measurement Device for Determining the Gas Drilling Subsurface Blasting Limits[J]. Petroleum Drilling Techniques, 2019, 47(5): 62-68. DOI: 10.11911/syztjs.2019040
    [6]LI Gao, CHEN Ze, MENG Yingfeng, CHEN Yijian, JIANG Zujun. Research on Measurement Methods of MMWD during Gas Drilling[J]. Petroleum Drilling Techniques, 2018, 46(5): 52-56. DOI: 10.11911/syztjs.2018055
    [7]HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
    [8]Ma Jinliang, Pan Juanfang, Wang Lin, Zhang Wu, Li Nan, Zhu Daoping. Development and Application of Self-Sealing Compression Packer[J]. Petroleum Drilling Techniques, 2015, 43(6): 120-124. DOI: 10.11911/syztjs.201506022
    [9]Wang Xiyong, Jiang Zujun, Lian Zhanghua. Development and Field Test of Shock Absorber in Gas Drilling Tool[J]. Petroleum Drilling Techniques, 2012, 40(4): 119-122. DOI: 10.3969/j.issn.1001-0890.2012.04.024
    [10]Sun Xiaojie, Cheng Yuanfang, Li Lingdong, Cui Qing, Li Qingping. Triaxial Compression Test on Synthetic Core Sample with Simulated Hydrate-Bearing Sediments[J]. Petroleum Drilling Techniques, 2012, 40(4): 52-57. DOI: 10.3969/j.issn.1001-0890.2012.04.011
  • Cited by

    Periodical cited type(5)

    1. 李新勇,李骁,赵兵,王琨,苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术. 石油钻探技术. 2022(02): 92-98 . 本站查看
    2. 邱春阳,张翔宇,赵红香,王雪晨,张海青,陈二丁. 顺北区块深层井壁稳定钻井液技术. 天然气勘探与开发. 2021(02): 81-86 .
    3. 汤明光,刘清华,薛国庆,方小宇,唐慧敏. 海上低渗油藏大井距精细注水技术应用实践. 承德石油高等专科学校学报. 2020(02): 11-15+37 .
    4. 刘阳. 高温深层碳酸盐岩裸眼酸压完井封隔器研制与现场试验. 石油钻探技术. 2020(06): 76-81 . 本站查看
    5. 刘彪,潘丽娟,张俊,白彬珍,李双贵. 顺北区块超深小井眼水平井优快钻井技术. 石油钻探技术. 2016(06): 11-16 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (309) PDF downloads (80) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return