JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development Status and Future Trends of Intelligent Fracturing Technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1-9. DOI: 10.11911/syztjs.2022065
Citation: JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development Status and Future Trends of Intelligent Fracturing Technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1-9. DOI: 10.11911/syztjs.2022065

Development Status and Future Trends of Intelligent Fracturing Technologies

More Information
  • Received Date: March 10, 2022
  • Accepted Date: April 24, 2022
  • Available Online: May 04, 2022
  • With the rapid development of artificial intelligence technology and its wide implementation in the oil and gas industry, impressive progress in intelligent fracturing technologies has been achieved. These are technologies that involve the intelligent optimization of fracture and fracturing parameters, fluids and materials, equipment and tools, early warning system for fracturing risks, control of real-time fracturing parameter optimization, and fracture monitoring, etc. Despite that, a complete intelligent fracturing technology system remains to be developed due to unbalanced developed degree among those aspects.After the development status of intelligent fracturing technologies was analyzed, the development trends of intelligent fracturing were identified, including in-depth data mining of small data samples, building an intelligent decision-making platform for geological-engineering integrated fracturing based on 3D sweet spot distribution, developing intelligent responsive fracturing fluids and materials, creating a 4D intelligent monitoring model for fracture propagation and achieving visualization, and building unattended fracturing equipment and intelligent tools. All of these are crucial for developing a complete and uniform intelligent fracturing technology system and accomplishing another round of hydraulic fracturing technology innovations.

  • [1]
    蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071
    [2]
    王欢,计秉玉,廖新维,等. 致密油藏体积压裂水平井压力特征[J]. 断块油气田,2020,27(2):217–223.

    WANG Huan, JI Bingyu, LIAO Xinwei, et al. Pressure characteristics for volume-fractured horizontal well in tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2020, 27(2): 217–223.
    [3]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
    [4]
    王兴文,何颂根,林立世,等. 威荣区块深层页岩气井体积压裂技术[J]. 断块油气田,2021,28(6):745–749.

    WANG Xingwen, HE Songgen, LIN lishi, et al. Volume fracturing technology of deep shale gas well in Weirong Block[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 745–749.
    [5]
    李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98. doi: 10.11911/syztjs.2021080

    LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98. doi: 10.11911/syztjs.2021080
    [6]
    慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019

    MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019
    [7]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [8]
    钟森,谭明文,赵祚培,等. 永川深层页岩气藏水平井体积压裂技术[J]. 石油钻采工艺,2019,41(4):529–533.

    ZHONG Sen, TAN Mingwen, ZHAO Zuopei, et al. Volume fracturing for horizontal wells in Yongchuan deep shale gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(4): 529–533.
    [9]
    窦宏恩,张蕾,米兰,等. 人工智能在全球油气工业领域的应用现状与前景展望[J]. 石油钻采工艺,2021,43(4):405–419.

    DOU Hongen, ZHANG Lei, MI Lan, et al. The application status and prospect of artificial intelligence in the global oil and gas industry[J]. Oil Drilling & Production Technology, 2021, 43(4): 405–419.
    [10]
    杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
    [11]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [12]
    王敏生,光新军,耿黎东. 人工智能在钻井工程中的应用现状与发展建议[J]. 石油钻采工艺,2021,43(4):420–427.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Application status and development suggestions of artificial intelligence in drilling engineering[J]. Oil Drilling & Production Technology, 2021, 43(4): 420–427.
    [13]
    石崇东,李琪,张绍槐. 智能油田和智能钻采技术的应用与发展[J]. 石油钻采工艺,2005,27(3):1–4. doi: 10.3969/j.issn.1000-7393.2005.03.001

    SHI Chongdong, LI Qi, ZHANG Shaohuai. Application and development of the intelligent oil field and intelligent drilling and production technologies[J]. Oil Drilling & Production Technology, 2005, 27(3): 1–4. doi: 10.3969/j.issn.1000-7393.2005.03.001
    [14]
    蒋廷学,汪永利,丁云宏,等. 压裂方案经济优化的智能专家系统研究[J]. 石油学报,2004,25(1):66–69. doi: 10.3321/j.issn:0253-2697.2004.01.014

    JIANG Tingxue, WANG Yongli, DING Yunhong, et al. Expert system for economic optimization of hydraulic fracturing design[J]. Acta Petrolei Sinica, 2004, 25(1): 66–69. doi: 10.3321/j.issn:0253-2697.2004.01.014
    [15]
    WANG Leizheng, SUN A Y. Well spacing optimization for Permian Basin based on integrated hydraulic fracturing, reservoir simulation and machine learning study[R]. URTEC 2020−3104-MS, 2020.
    [16]
    蒋廷学. 复杂难动用油气藏压裂技术及案例分析[M]. 北京: 中国石化出版社, 2017: 231−234.

    JIANG Tingxue. Fracturing technology and case analysis of complex and difficult to produce oil and gas reservoirs[M]. Beijing: China Petrochemical Press, 2017: 231−234.
    [17]
    段永刚,张泰来,魏明强,等. 页岩气藏“井工厂”模式下水平井裂缝分布优化[J]. 油气藏评价与开发,2019,9(6):78–84. doi: 10.3969/j.issn.2095-1426.2019.06.014

    DUAN Yonggang, ZHANG Tailai, WEI Mingqiang, et al. Optimization of fracture layout of fractured horizontal well in multi-well pad mode of shale gas reservoirs[J]. Reservoir Evaluation and Development, 2019, 9(6): 78–84. doi: 10.3969/j.issn.2095-1426.2019.06.014
    [18]
    姚军,李志豪,孙海. 基于代理辅助分层粒子群算法的页岩气藏压裂参数优化[J]. 中国石油大学学报(自然科学版),2020,44(4):12–19.

    YAO Jun, LI Zhihao, SUN Hai. Optimization of fracturing parameters for shale gas reservoir based on a surrogate-assisted hierarchical particle swarm optimization algorithm[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 12–19.
    [19]
    马嘉令,盛广龙,刘红林,等. 非常规气藏压裂水平井缝网-井网自动优化方法[J]. 天然气地球科学,2020,31(8):1168–1177.

    MA Jialing, SHENG Guanglong, LIU Honglin, et al. Automatic optimization method of fracture pattern and well pattern for fractured horizontal wells in unconventional gas reservoirs[J]. Natural Gas Geoscience, 2020, 31(8): 1168–1177.
    [20]
    BAKI S, TEMIZEL C, DURSUN S. Well completion optimization in unconventional reservoirs using machine learning methods[R]. SPE 206241, 2021.
    [21]
    NABORS J, VOSS T, BOGDAN A, et al. Basin-specific machine learning models for efficient completions optimization[R]. URTEC 2020−2770-MS, 2020.
    [22]
    LIAO Lulu, ZENG Yijin, LIANG Yu, et al. Data mining: a novel strategy for production forecast in tight hydrocarbon resource in Canada by random forest analysis[R]. IPTC 20344-MS, 2020.
    [23]
    LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at Duvernay Formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(6): 2423–2437. doi: 10.2118/195698-PA
    [24]
    AL-ALWANI M A, DUNN-NORMAN S, BRITT L K, et al. Descriptive data analytics for the stimulation, completion activities, and wells’ productivity in the Marcellus shale play[R]. URTEC 198290-MS, 2019.
    [25]
    URBAN-RASCON E, AGUILERA R. Machine learning applied to SRV modeling, fracture characterization, well interference and production forecasting in low permeability reservoirs[R]. SPE 199082, 2020.
    [26]
    戴彩丽,高明伟,赵明伟,等. 可修复循环利用二氧化碳智能响应清洁压裂液构筑及成胶机制[J]. 中国石油大学学报(自然科学版),2020,44(5):103–113.

    DAI Caili, GAO Mingwei, ZHAO Mingwei, et al. Construction and gelation mechanism of a reusable carbon dioxide smart response clean fracturing fluid system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(5): 103–113.
    [27]
    王磊,沈一丁,薛小佳,等. 新型酸性清洁压裂液的研制[J]. 石油天然气学报,2010,32(6):135–138. doi: 10.3969/j.issn.1000-9752.2010.06.031

    WANG Lei, SHEN Yiding, XUE Xiaojia, et al. Study on the properties of acid clean fracturing fluid[J]. Journal of Oil and Gas Technology, 2010, 32(6): 135–138. doi: 10.3969/j.issn.1000-9752.2010.06.031
    [28]
    周利华, 李骏, 吴明移, 等. 一种智能包封酸及使用方法: CN202011349618.0[P]. 2021−03 −12.

    ZHOU Lihua, LI Jun, WU Mingyi, et al. An intelligent encapsulated acid and its application method: CN202011349618.0[P]. 2021−03−12.
    [29]
    高峰,胡军,程芳,等. 速溶型智能转向酸的开发与应用[J]. 油田化学,2021,38(1):42–46.

    GAO Feng, HU Jun, CHENG Fang, et al. Development and application of instant and intelligent diverting acid[J]. Oilfield Chemistry, 2021, 38(1): 42–46.
    [30]
    CHANG F F, BERGER P D, LEE C H. In-situ formation of proppant and highly permeable blocks for hydraulic fracturing[R]. SPE 173328, 2015.
    [31]
    ALEXANDER S, DUNNILL C W, BARRON A R. Assembly of porous hierarchical copolymers/resin proppants: new approaches to smart proppant immobilization via molecular anchors[J]. Journal of Colloid and Interface Science, 2016, 466: 275–283. doi: 10.1016/j.jcis.2015.12.038
    [32]
    SANTOS L, DAHI TALEGHANI A, LI G. Smart expandable proppants to achieve sustainable hydraulic fracturing treatments: Proceedings-SPE Annual Technical Conference and Exhibition, Dubai, September 26 − 28, 2016 [C]. Dubai: SPE, 2016.
    [33]
    MILLER C, ZENG Tongzhou, MOHANTY K. Evaluation of chemical blends for shale EOR[R]. SPE 195819, 2019.
    [34]
    裴宇昕. 受温度激发的自转向压裂液研究[D]. 成都: 西南石油大学, 2017.

    PEI Yuxin. Study on temperature-induced self-diverting fracturing fluid[D]. Chengdu: Southwest Petroleum University, 2017.
    [35]
    苏鑫, 冯玉军, 张近知. 基于动态共价键的CO2响应性智能水凝胶及其制备方法和应用: CN202110912566.1[P]. 2021−11−12.

    SU Xin, FENG Yujun, ZHANG Jinzhi. CO2 responsive intelligent hydrogel based on dynamic covalent bond and its preparation and application: CN202110912566.1[P]. 2021−1 −12.
    [36]
    罗明良, 孙涛, 温庆志, 等. 一种基于磁流变液的油气井暂堵剂及其制备方法与应用: CN201410091171. X[P]. 2014−06−04.

    LUO Mingliang, SUN Tao, WEN Qingzhi, et al. A temporary plugging agent for oil and gas wells based on magnetorheological fluid and its preparation method and application: CN201410091171. X[P]. 2014−06−04.
    [37]
    SANTOS L, TALEGHANI A D, LI Guoqiang. Expandable diverting agents to improve efficiency of refracturing treatments[R]. URTEC 2697493-MS, 2017.
    [38]
    张树立,李心成. 适合中国大型页岩气压裂成套装备的解决方案[J]. 石油机械,2018,46(12):60–67.

    ZHANG Shuli, LI Xincheng. The solution of massive hydraulic fracturing of shale gas in China[J]. China Petroleum Machinery, 2018, 46(12): 60–67.
    [39]
    台广锋,潘社卫,舒峰,等. 工厂化压裂连续输砂装置智能控制系统研究[J]. 矿冶,2015,24(5):67–71. doi: 10.3969/j.issn.1005-7854.2015.05.017

    TAI Guangfeng, PAN Shewei, SHU Feng, et al. Study on an intelligent control system of the sand conveyance device for factory fracturing[J]. Mining and Metallurgy, 2015, 24(5): 67–71. doi: 10.3969/j.issn.1005-7854.2015.05.017
    [40]
    魏爱拴,刘禹铭,王明杰,等. 可溶球智能压裂投球器的研制[J]. 石化技术,2018,25(7):315. doi: 10.3969/j.issn.1006-0235.2018.07.257

    WEI Aishuan, LIU Yuming, WANG Mingjie, et al. Development of soluble ball intelligent fracturing pitcher[J]. Petrochemical Industry Technology, 2018, 25(7): 315. doi: 10.3969/j.issn.1006-0235.2018.07.257
    [41]
    李大寨,王克沛. 基于RFID技术的智能滑套分段压裂工具的设计[J]. 机械与电子,2014(2):50–53. doi: 10.3969/j.issn.1001-2257.2014.02.013

    LI Dazhai, WANG Kepei. Design of smart sleeve staged fracturing tool based on radio frequency identification technology[J]. Machinery & Electronics, 2014(2): 50–53. doi: 10.3969/j.issn.1001-2257.2014.02.013
    [42]
    黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究[J]. 石油钻探技术,2019,47(6):83–88. doi: 10.11911/syztjs.2019123

    LI Wei, XIA Yang, CHEN Xi. Design and experimental study of an RFID intelligent sliding sleeve[J]. Petroleum Drilling Techniques, 2019, 47(6): 83–88. doi: 10.11911/syztjs.2019123
    [43]
    秦金立,戴文潮,万雪峰,等. 无线射频识别技术在多级滑套压裂工具中的应用探讨[J]. 石油钻探技术,2013,41(3):123–126. doi: 10.3969/j.issn.1001-0890.2013.03.024

    QIN Jinli, DAI Wenchao, WAN Xuefeng, et al. Application of radio frequency identification in multistage fracturing sleeve tools[J]. Petroleum Drilling Techniques, 2013, 41(3): 123–126. doi: 10.3969/j.issn.1001-0890.2013.03.024
    [44]
    王斌,郭岩宝,田晓雨,等. 水平井压裂装置智能趾端滑套设计[J]. 石油矿场机械,2021,50(5):52–59. doi: 10.3969/j.issn.1001-3482.2021.05.010

    WANG Bin, GUO Yanbao, TIAN Xiaoyu, et al. Design of intelligent toe slide sleeve for horizontal well fracturing device[J]. Oil Field Equipment, 2021, 50(5): 52–59. doi: 10.3969/j.issn.1001-3482.2021.05.010
    [45]
    胡瑾秋, 刘慧舟. 页岩气压裂作业井下事故智能监测与远程预警发布系统: 2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017)论文集[C]. 济南: 中国自动化学会, 2017: 648−653.

    HU Jinqiu, LIU Huizhou. Intelligent monitoring and remote early warning system for underground accidents in shale gas fracturing operation: Proceedings of 2017 China Automation Conference (CAC217) and International Intelligent Manufacturing Innovation Conference (CIMIC2017) [C]. Jinan: Chinese Association of Automation, 2017: 648−653.
    [46]
    张鑫. 基于贝叶斯网络的页岩气压裂作业及关键设备实时风险评估方法研究[D]. 北京: 中国石油大学(北京), 2019.

    ZHANG Xin. Research on real-time risk assessment method for shale gas fracturing operation and key equipment based on Bayesian network[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [47]
    田斯赟. 页岩气压裂过程异常工况预测与溯源方法研究[D]. 北京: 中国石油大学(北京), 2017.

    TIAN Siyun. Research on shale gas fracturing abnormal condition prediction and cause analysis method[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [48]
    NOLTE K G, SMITH M B. Interpretation of fracturing pressures[J]. Journal of Petroleum Technology, 1981, 33(9): 1767–1775. doi: 10.2118/8297-PA
    [49]
    MASSARAS L V, MASSARAS D V. Real-time advanced warning of screenouts with the inverse slope method[R]. SPE 150263, 2012.
    [50]
    UNAL E, SIDDIQUI F, SOLIMAN M Y. Wavelet analysis of fracturing pressure data[R]. SPE 189885, 2018.
    [51]
    MERRY H, LI Weichang, DEFFENBAUGH M, et al. Optimizing distributed acoustic sensing (DAS) acquisition: test well design and automated data analysis[R]. SEG 2020 − 3419338, 2020.
    [52]
    方博涛. 压裂实时动态预警系统研究与设计[D]. 成都: 西南石油大学, 2015.

    FANG Botao. Research and design of fracturing real-time dynamic early warning system[D]. Chengdu: Southwest Petroleum University, 2015.
    [53]
    CHENG Guozhu, CHENG Rui, ZHANG Sulu, et al. Risk evaluation method for highway roadside accidents[J]. Advances in Mechanical Engineering, 2019, 11(1): 1–12.
    [54]
    YU Y, MISRA S, OGHENEKARO O, et al. Pseudosonic log generation with machine learning: a tutorial for the 2020 SPWLA PDDA SIG ML contest[J]. SPWLA Today, 2020, 2: 97–101.
    [55]
    LIU Liwang, LI Haibo, LI Xiaofeng, et al. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: insights from digital image correlation (DIC) analysis[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 857–873. doi: 10.1007/s00603-020-02286-x
    [56]
    Anon. TM intelligent fracturing service[EB/OL]. [2019−09−05].https://www.halliburton.com/en-US/ps/stimulation/fracturing/prodigi.html.
    [57]
    VERKHOVTSEVA N, BAGHERIAN B, MUKHTAROV T. Determining bedding slip planes with microseismic processing[R]. URTEC 2668912-MS, 2017.
    [58]
    崔晨雨. 致密油气藏复杂压裂裂缝智能反演方法研究[D]. 青岛: 中国石油大学(华东), 2019.

    CUI Chenyu. Research on intelligent inversion method for complex hydraulic fracture network in tight reservoir[D]. Qingdao: China University of Petroleum(East China), 2019.
    [59]
    ZHANG Kuangsheng, TANG Meirong, YONG S S, et al. Evaluation of stage contribution and interwell connectivity during initial flowback and oil production in a tight oil horizontal stimulation using tracer technology[R]. SPE 181854, 2016.
    [60]
    OVCHINNIKOV K, GURIANOV A, BUZIN P, et al. Production logging in horizontal wells without well intervention[R]. SPE 187751, 2017.
    [61]
    SENGUPTA S. An innovative approach to image fracture dimensions by injecting ferrofluids[R]. SPE 162365, 2012.
    [62]
    李海涛,罗红文,向雨行,等. 基于DTS的页岩气水平井人工裂缝识别与产出剖面解释方法[J]. 天然气工业,2021,41(5):66–75. doi: 10.3787/j.issn.1000-0976.2021.05.007

    LI Haitao, LUO Hongwen, XIANG Yuxing, et al. DTS based hydraulic fracture identification and production profile interpretation method of horizontal well[J]. Natural Gas Industry, 2021, 41(5): 66–75. doi: 10.3787/j.issn.1000-0976.2021.05.007
    [63]
    LUO Hongwen, LI Ying, LI Haitao, et al. Simulated annealing algorithm-based inversion model to interpret flow rate profiles and fracture parameters for horizontal wells in unconventional gas reservoirs[J]. SPE Journal, 2021, 26(4): 1679–1699. doi: 10.2118/205010-PA
    [64]
    许行,张凯,王文剑. 一种小样本数据的特征选择方法[J]. 计算机研究与发展,2018,55(10):2321–2330. doi: 10.7544/issn1000-1239.2018.20170748

    XU Hang, ZHANG Kai, WANG Wenjian. A feature selection method for small samples[J]. Journal of Computer Research and Development, 2018, 55(10): 2321–2330. doi: 10.7544/issn1000-1239.2018.20170748
    [65]
    张玲玲,陈一苇,吴文俊,等. 基于对比约束的可解释小样本学习[J]. 计算机研究与发展,2021,58(12):2573–2584. doi: 10.7544/issn1000-1239.2021.20210999

    ZHANG Lingling, CHEN Yiwei, WU Wenjun, et al. Interpretable few-shot learning with contrastive constraint[J]. Journal of Computer Research and Development, 2021, 58(12): 2573–2584. doi: 10.7544/issn1000-1239.2021.20210999
  • Related Articles

    [1]LI Tao, YANG Zhe, XU Weiqiang, YANG Qiang, YANG Zhaoliang. Optimized and Fast Drilling Technology for Deep Shale Gas Horizontal Wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16-21. DOI: 10.11911/syztjs.2022036
    [2]YANG Jing, TU Fuhong, HUO Rujun, TAO Ruidong, SHANG Zibo, GUO Liang. Key Technologies for Slim Hole Drilling in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 22-27. DOI: 10.11911/syztjs.2020082
    [3]SHEN Zhaochao, HUO Rujun, YU Yanfei, DONG Yifan, NI Xiaowei, LEI Yu. One-Trip Drilling Technology of the Second-Spud Section for Slim-Holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15-20. DOI: 10.11911/syztjs.2020081
    [4]HUANG Guoping, HE Shiming, TANG Ming, LIU Yang, LEI Ming. A Study on the Effect of Displacement Gas Cut on Fractured Reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21-25. DOI: 10.11911/syztjs.2018125
    [5]KUANG Lixin, LIU Weidong, GAN Xinxing, JIANG Zhenghua, CHEN Shikui. Acceleration Potentials Analysis of Shale Gas Horizontal Well Drilling in the South Pingqiao Block of Fuling[J]. Petroleum Drilling Techniques, 2018, 46(4): 16-22. DOI: 10.11911/syztjs.2018102
    [6]YANG Haiping. Optimized and Fast Drilling Technology for Horizontal Shale Gas Wells in Pingqiao and Jiangdong Blocks of Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 13-19. DOI: 10.11911/syztjs.2018071
    [7]SHI Bingzhong, XIE Chao, LI Sheng, LIU Jinhua, CHEN Xiaofei. Development and Application of Drilling Fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37-41. DOI: 10.11911/syztjs.201706007
    [8]LIU Biao, PAN Lijuan, ZHANG Jun, BAI Binzhen, LI Shuanggui. The Optimized Drilling Techniques Used in Ultra-Deep and Slim-Hole Horizontal Wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11-16. DOI: 10.11911/syztjs.201606002
    [9]Wan Xuxin. Oil-Based Drilling Fluid Applied in Drilling Shale Oil Reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44-50. DOI: 10.3969/j.issn.1001-0890.2013.06.009
    [10]Zhao Xiangyang, Zhang Xiaoping, Chen Lei, Zhang Zhenhuo, Sun Yan. Application of Formate Drilling Fluid in Changbei Block[J]. Petroleum Drilling Techniques, 2013, 41(1): 40-44. DOI: 10.3969/j.issn.1001-0890.2013.01.008
  • Cited by

    Periodical cited type(15)

    1. 蔡振,张建鑫,郭少璞. 油田超深井钻井关键技术研究与分析. 石化技术. 2023(04): 101-103 .
    2. 黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
    3. 谢关宝. 轻质水泥浆固井质量测井评价标准构建. 石油钻探技术. 2022(01): 119-126 . 本站查看
    4. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
    5. 宋振响,周卓明,徐旭辉,王保华,李浩,马中良,陈斐然. “十三五”中国石化油气资源评价关键技术进展与发展方向. 中国石油勘探. 2022(03): 27-37 .
    6. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    7. 甘心. 钻井提速用振动冲击工具研究进展. 钻探工程. 2021(02): 85-93 .
    8. 刘平全,李磊兵,施禹岑,韩龙. 井壁深穿透电控钻孔技术研究与现场试验. 石油钻探技术. 2021(03): 55-61 . 本站查看
    9. 张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 . 本站查看
    10. 汪海阁,黄洪春,毕文欣,纪国栋,周波,卓鲁斌. 深井超深井油气钻井技术进展与展望. 天然气工业. 2021(08): 163-177 .
    11. 杨志军,杜旭林,曹仁义,葛增壮,杨松林. 复杂小断块采收率及经济合理井网密度模型. 断块油气田. 2020(01): 80-84 .
    12. 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 . 本站查看
    13. 苏剑波. 高温高压深井试油完井初探. 石化技术. 2020(10): 200-201 .
    14. 杨孟芝,吴海欧,王恒,魏斌,石文睿. 页岩气水平井裸眼井测井工艺及应用. 江汉石油职工大学学报. 2020(06): 18-20 .
    15. 黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (2229) PDF downloads (452) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return