ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(4):69-75. DOI: 10.11911/syztjs.2022035
Citation: ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(4):69-75. DOI: 10.11911/syztjs.2022035

A Comparative Study on the Calculation Accuracy of Numerical and Analytical Models for Wellbore Temperature in Ultra-Deep Wells

More Information
  • Received Date: July 11, 2021
  • Revised Date: April 05, 2022
  • Available Online: May 04, 2022
  • The accurate prediction of wellbore temperature during drilling is the key factor in the scientific evaluation of wellbore fluid flow safety and pressure control. Therefore, based on the principle of energy conservation between wellbore and formation in each area, the numerical and analytical models for wellbore-formation heat transfer were built. The fully implicit finite difference method and the analytical method were adopted to solve the mathematical models, respectively. Given the wellbore structure and drilling parameters of an ultra-deep well in Shunbei Oilfield, calculation accuracy of the above two models on the calculation results and the influencing factors were analyzed from the aspect of the heat transfer mechanism. The analysis showed that during drilling, the annular fluid temperature in the lower well section was lower than the original ground temperature, while the fluid temperature in the upper well section was higher than it. In the analytical model, a simplified dimensionless time function was used to represent the quasi-steady state heat exchange mode from distant formations to near well walls, and the comprehensive heat transfer coefficient was employed to characterize the total heat exchange between the formation and annulus, and between the annulus and the interior of the drill string. As a result, the wellbore-formation heat exchange was reduced, and thus the calculated fluid temperature in the annulus and drill string was lower than the result from numerical simulations. The results revealed that the calculated results of the heat transfer model were highly consistent with the downhole measurements, while the errors of the numerical solution and analytical solution were 1.46% and 6.94%, respectively, with a difference of 13.15 ℃. The research results provide a theoretical basis for an in-depth understanding of the wellbore-formation heat transfer mechanism and the accurate evaluation of the temperature field during drilling.

  • [1]
    袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067
    [2]
    李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
    [3]
    苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006

    SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No. 1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006
    [4]
    付建红,苏昱,姜伟,等. 深层页岩气水平井井筒瞬态温度场研究与应用[J]. 西南石油大学学报(自然科学版),2019,41(6):165–173.

    FU Jianhong, SU Yu, JIANG Wei, et al. Research and application of wellbore transient temperature in deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 165–173.
    [5]
    刘洋,艾正青,李早元,等. 注水泥循环温度影响因素探讨[J]. 西南石油大学学报(自然科学版),2012,34(1):154–158.

    LIU Yang, AI Zhengqing, LI Zaoyuan, et al. Discussion on the influence factors of cementing circulating temperature[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(1): 154–158.
    [6]
    YANG Mou, LI Xiaoxiao, DENG Jianmin, et al. Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions[J]. Energy, 2015, 91: 1018–1029. doi: 10.1016/j.energy.2015.09.001
    [7]
    YANG Mou, ZHAO Xiangyang, MENG Yingfeng, et al. Determination of transient temperature distribution inside a wellbore considering drill string assembly and casing program[J]. Applied Thermal Engineering, 2017, 118: 299–314. doi: 10.1016/j.applthermaleng.2017.02.070
    [8]
    杨谋,孟英峰,李皋,等. 钻井全过程井筒–地层瞬态传热模型[J]. 石油学报,2013,34(2):366–371. doi: 10.7623/syxb201302021

    YANG Mou, MENG Yingfeng, LI Gao, et al. A transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Petrolei Sinica, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021
    [9]
    王雪瑞,孙宝江,刘书杰,等. 基于水化反应动力学的深水固井井筒温度与压力耦合预测模型[J]. 石油勘探与开发,2020,47(4):809–818. doi: 10.11698/PED.2020.04.18

    WANG Xuerui, SUN Baojiang, LIU Shujie, et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4): 809–818. doi: 10.11698/PED.2020.04.18
    [10]
    HASAN A R, KABIR C S. Aspects of wellbore heat transfer during two-phase flow[J]. SPE Production & Facilities, 1994, 9(3): 211–216.
    [11]
    KABIR C S, HASAN A R, KOUBA G E, et al. Determining circulating fluid temperature in drilling, workover, and well control operations[J]. SPE Drilling & Completion, 1996, 11(2): 74–79.
    [12]
    唐林,冯文伟,王林. 井内及井壁瞬态温度的确定[J]. 钻井液与完井液,1998,15(5):29–33.

    TANG Lin, FENG Wenwei, WANG Lin. Determining instantaneous state temperature in the borehole and the wall[J]. Drilling Fluid & Completion Fluid, 1998, 15(5): 29–33.
    [13]
    窦亮彬,李根生,沈忠厚,等. 注CO2井筒温度压力预测模型及影响因素研究[J]. 石油钻探技术,2013,41(1):76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015

    DOU Liangbin, LI Gensheng, SHEN Zhonghou, et al. Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J]. Petroleum Drilling Techniques, 2013, 41(1): 76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015
    [14]
    NIAN Yongle, CHENG Wenlong. Evaluation of geothermal heating from abandoned oil wells[J]. Energy, 2018, 142: 592–607. doi: 10.1016/j.energy.2017.10.062
    [15]
    李勇,纪宏飞,邢鹏举,等. 气井井筒温度场及温度应力场的理论解[J]. 石油学报,2021,42(1):84–94. doi: 10.7623/syxb202101008

    LI Yong, JI Hongfei, XING Pengju, et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well[J]. Acta Petrolei Sinica, 2021, 42(1): 84–94. doi: 10.7623/syxb202101008
    [16]
    YANG Mou, YANG Lyuchao, WANG Tao, et al. Estimating formation leakage pressure using a coupled model of circulating temperature-pressure in an eccentric annulus[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106918. doi: 10.1016/j.petrol.2020.106918
    [17]
    张更,李军,柳贡慧,等. 考虑钻井液流动阻力与钻柱旋转的井筒瞬态传热新模型[J]. 断块油气田,2021,28(1):133–138.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. Transient wellbore heat transfer new model considering drilling fluid flow resistance and drillstring rotation[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 133–138.
    [18]
    张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011
    [19]
    董胜伟,王子健,曹 飞,等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏,2020,27(5):157–161.

    DONG Shengwei, WANG Zijian, CAO Fei,et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoirs in deep water[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 157–161.
    [20]
    杨顺辉,豆宁辉,赵向阳,等. 多层合采智能井井筒温度场预测模型及应用[J]. 石油钻探技术,2019,47(4):83–91.

    YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, et al. Temperature field prediction model for multi-layer commingled production wellbore in intelligent wells and it’s application[J]. Petroleum Dril-ling Techniques, 2019, 47(4): 83–91.
    [21]
    YANG Mou, LUO Dayu, CHEN Yuanhang, et al. Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling[J]. Applied Energy, 2019, 238: 1471–1483. doi: 10.1016/j.apenergy.2019.01.164
  • Related Articles

    [1]LI Fuqiang, SONG Zhaohui, YI Ming, LIU Hongtao, ZHANG Sen, DIAO Binbin. Calculation of Optimal Distance Between Electrode and Probe in Relief Well Magnetic Ranging[J]. Petroleum Drilling Techniques, 2024, 52(3): 34-39. DOI: 10.11911/syztjs.2024008
    [2]ZHANG Guilin. Modification of the Relative Time Method Calculation Formula for Oil and Gas Up-Channeling Velocity[J]. Petroleum Drilling Techniques, 2024, 52(1): 32-37. DOI: 10.11911/syztjs.2023102
    [3]LIU Hui, DING Xinlu, ZHANG Shijie, FANG Yungui, HAO Xiaobo, ZHENG Weige. Integrated Calculation Method of Pressure and Formation Parameters in Gas Injection Process of Underground Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(6): 64-71. DOI: 10.11911/syztjs.2022047
    [4]YUAN Haiping, TAO Changzhou, GAO Yan, XIA Yulei. A Method to Improve the Accuracy of Friction Calculations for HPG Fracturing Fluid[J]. Petroleum Drilling Techniques, 2017, 45(5): 108-112. DOI: 10.11911/syztjs.201705019
    [5]YANG Zhen, XIAO Hongbing, LI Cui. Impacts of Accuracy of Azimuthal Electromagnetic Logging-while-Drilling on Resistivity and Interface Prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115-120. DOI: 10.11911/syztjs.201704020
    [6]LI Cui, GAO Deli, LIU Qinglong, KONG Xue. A Method of Calculating of Avoiding Collisions with Adjacent Wells Using Electromagnetic Ranging Surveying while Drilling Tools[J]. Petroleum Drilling Techniques, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009
    [7]Lu Gang, Chen Chongbin. Analytic Solution the Design Problem of a Hyperboloidal Arch Type Trajectory of Equal Curvature for Step-Horizontal Hole Sections[J]. Petroleum Drilling Techniques, 2014, 42(6): 13-17. DOI: 10.11911/syztjs.201406003
    [8]Li Longlong, Wu Minglu, Yao Jun, Li Yang, Li Xiaoxue. Calculation Method of the Productivity of Partially Perforated Vertical Well[J]. Petroleum Drilling Techniques, 2014, 42(3): 80-89. DOI: 10.3969/j.issn.1001-0890.2014.03.016
    [9]Lu Gang. Quasi-Analytic Solution Theory for Arc Type Well Trajectory Design[J]. Petroleum Drilling Techniques, 2014, 42(1): 26-32. DOI: 10.3969/j.issn.1001-0890.2014.01.005
    [10]Li Hao, Sun Baojiang, Gao Yonghai, Wang Jintang, Wang Ning. Design and Calculation of Hydraulic Parameters for Controlling Mud Cap in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 13-18. DOI: 10.3969/j.issn.1001-0890.2013.03.003
  • Cited by

    Periodical cited type(15)

    1. 刘清友,赵建国,方世纪. 全液压连续油管牵引器工作机理研究. 钻采工艺. 2025(01): 216-227 .
    2. 曾凡辉,胡大淦,郭建春,张柟乔,郑彬涛,白小嵩,陈掌星. 基于钻录井资料的页岩气水平井分段多簇差异化压裂参数智能优化. 天然气工业. 2025(02): 84-94 .
    3. 唐弘程. 海上调整井优快钻井技术管理研究. 中国石油和化工标准与质量. 2024(08): 177-179 .
    4. 宋先知,姚学喆,许争鸣,周蒙蒙,王庆辰. 超深井控温钻井隔热涂层参数影响机制研究. 石油钻探技术. 2024(02): 126-135 . 本站查看
    5. 陈建国,汪伟,都伟超. 渝西大安区块超深层页岩气水平井钻井提速关键技术研究. 钻探工程. 2024(04): 154-162 .
    6. 冯秀鲁. 油田深层油藏钻井提速技术研究及应用. 西部探矿工程. 2024(08): 68-70+74 .
    7. 程童,黎波,张中,黄兰,张庆,卢海兵,李晓晨,陈小龙,巩建平. 渝西区块深层页岩气井钻头优选研究. 四川地质学报. 2024(S1): 15-20 .
    8. Yaoran Wei,Yongcun Feng,Zhenlai Tan,Tianyu Yang,Shuang Yan,Xiaorong Li,Jingen Deng. Simultaneously improving ROP and maintaining wellbore stability in shale gas well:A case study of Luzhou shale gas reservoirs. Rock Mechanics Bulletin. 2024(03): 91-103 .
    9. 欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 .
    10. 赵文彬,宋文豪. 永川黄202区块页岩气水平井钻井提速对策分析. 天然气勘探与开发. 2023(02): 127-134 .
    11. 温景东. 页岩气开采安全管理现状及改进策略. 石化技术. 2023(07): 218-220 .
    12. 张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 . 本站查看
    13. 倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 .
    14. 罗双平,刘青,韩巍,谭宇龙,周焱. 基于井筒工程数据的钻井提速评价分析方法——以高石梯—磨溪区块为例. 天然气技术与经济. 2023(06): 21-28 .
    15. 朱明明,孙欢,孙艳,丛成,侍德益,贾继国. 陇东致密油区域恶性出水漏层堵漏技术. 石油钻探技术. 2023(06): 50-56 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (391) PDF downloads (70) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return