DI Shiying, CHENG Shiqing, BAI Wenpeng, SHANG Ruyuan, PAN Youjun, SHI Wenyang. Simulation of Transformation from Water-Injection Huff and Puff to Unstable Water-Flooding in Developing Fractured Tight Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 89-96. DOI: 10.11911/syztjs.2021135
Citation: DI Shiying, CHENG Shiqing, BAI Wenpeng, SHANG Ruyuan, PAN Youjun, SHI Wenyang. Simulation of Transformation from Water-Injection Huff and Puff to Unstable Water-Flooding in Developing Fractured Tight Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 89-96. DOI: 10.11911/syztjs.2021135

Simulation of Transformation from Water-Injection Huff and Puff to Unstable Water-Flooding in Developing Fractured Tight Reservoirs

More Information
  • Received Date: August 28, 2021
  • Revised Date: December 12, 2021
  • Accepted Date: October 31, 2021
  • Available Online: November 08, 2021
  • Multiple rounds of huff and puff in tight reservoirs usually lead to a rapid decrease in production. Taking the M block of a tight reservoir with developed natural fractures as an example, a numerical simulation was conducted based on the physical properties of the matrix, natural fractures, and fractured fractures as well as the pressure difference to analyze the stress field of fracture tips and the features of fracture propagation. On this basis, a comparative analysis was then carried out to evaluate the development effect of water-injection huff and puff and unstable cyclic water injection. Results show that the formation pressure would grow with an increase in water injection time, and when the formation pressure was higher than the opening pressure of fractures, a complex and dynamic fracture network was formed with the expansion of natural fractures and the communication of fractured fractures. Unstable water-flooding can give full play to imbibition and displacement, and the change of water injection volume can effectively avoid water channeling and form relatively uniform flooding front. In addition, simulation results show that a significant increase of 18% in cumulative oil production of reservoirs with cyclic water injection compared with water-injection huff and puff. Therefore, transforming the development method into unstable water-flooding can effectively improve the oil production of horizontal wells in fractured tight reservoirs, providing a theoretical reference for optimizing the development of horizontal wells in tight reservoirs.
  • [1]
    孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J]. 石油勘探与开发,2019,46(6):1015–1026.

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015–1026.
    [2]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
    [3]
    张映红,路保平,陈作,等. 中国陆相致密油开采技术发展策略思考[J]. 石油钻探技术,2015,43(1):1–6.

    ZHANG Yinghong, LU Baoping, CHEN Zuo, et al. Technical strategy thinking for developing continental tight oil in China[J]. Petroleum Drilling Techniques, 2015, 43(1): 1–6.
    [4]
    李阳. 中国石化致密油藏开发面临的机遇与挑战[J]. 石油钻探技术,2015,43(5):1–6.

    LI Yang. Opportunities and challenges for Sinopec to develop tight oil reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(5): 1–6.
    [5]
    李国欣,覃建华,鲜成钢,等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J]. 石油勘探与开发,2020,47(6):1185–1197.

    LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: a case study of the Mahu Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1185–1197.
    [6]
    李洪,李治平,王香增,等. 表面活性剂对低渗透油藏渗吸敏感因素的影响[J]. 石油钻探技术,2016,44(5):100–103.

    LI Hong, LI Zhiping, WANG Xiangzeng, et al. The effect of surfactants on imbibition-sensitive factors of low-permeability reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(5): 100–103.
    [7]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
    [8]
    马剑,黄志龙,钟大康,等. 三塘湖盆地马朗凹陷二叠系条湖组凝灰岩致密储集层形成与分布[J]. 石油勘探与开发,2016,43(5):714–722.

    MA Jian, HUANG Zhilong, ZHONG Dakang, et al. Formation and distribution of tuffaceous tight reservoirs in the Permian Tiaohu Formation in the Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(5): 714–722.
    [9]
    王友净,宋新民,田昌炳,等. 动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J]. 石油勘探与开发,2015,42(2):222–228. doi: 10.11698/PED.2015.02.12

    WANG Youjing, SONG Xinmin, TIAN Changbing, et al. Dynamic fractures are an emerging new development geological attribute in water-flooding development of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(2): 222–228. doi: 10.11698/PED.2015.02.12
    [10]
    严谨,程时清,郑荣臣,等. 确定压裂裂缝部分闭合的现代产量递减分析方法及应用[J]. 石油钻采工艺,2018,40(6):787–793.

    YAN Jin, CHENG Shiqing, ZHENG Rongchen, et al. Development and application of the modern production decline analysis method in consideration of partial closure of hydraulic fracture[J]. Oil Drilling & Production Technology, 2018, 40(6): 787–793.
    [11]
    FAN Tianyi, SONG Xinmin, WU Shuhong, et al. A mathematical model and numerical simulation of waterflood induced dynamic fractures of low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 541–547. doi: 10.1016/S1876-3804(15)30047-1
    [12]
    WANG Yang, CHENG Shiqing, ZHANG Kaidi, et al. Investigation on the transient pressure response of water injector coupling the dynamic flow behaviors in the wellbore, waterflood-induced fracture and reservoir: semi-analytical modeling and a field case[J]. International Journal of Heat and Mass Transfer, 2019, 130: 668–679. doi: 10.1016/j.ijheatmasstransfer.2018.09.083
    [13]
    WANG Yang, CHENG Shiqing, ZHANG Kaidi, et al. Pressure-transient analysis of water injectors considering the multiple closures of waterflood-induced fractures in tight reservoirs: case studies in Changqing Oilfield, China[J]. Journal of Petroleum Science and Engineering, 2019, 172: 643–653. doi: 10.1016/j.petrol.2018.07.052
    [14]
    许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi: 10.11911/syztjs.2020114

    XU Feng, YAO Yuedong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi: 10.11911/syztjs.2020114
    [15]
    何吉祥,徐有杰,高阳,等. 裂缝性致密油藏多级压裂水平井试井模型[J]. 断块油气田,2021,28(2):241–246.

    HE Jixiang, XU Youjie, GAO Yang, et al. Well test model of multi-stage fractured horizontal well in fractured tight reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 241–246.
    [16]
    赵思远,贾自力,吴长辉,等. 低渗透油藏注水诱发裂缝实验研究:以鄂尔多斯盆地吴起吴仓堡长9油藏为例[J]. 非常规油气,2021,8(3):73–79,89.

    ZHAO Siyuan, JIA Zili, WU Changhui, et al. Experimental study on waterflood induced fractures simulation in low permeability reservoir: a case study from Chang 9 reservoir in Wuqi Wucangpu, Ordos Basin[J]. Unconventional Oil & Gas, 2021, 8(3): 73–79,89.
    [17]
    孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138. doi: 10.11911/syztjs.2021094

    MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138. doi: 10.11911/syztjs.2021094
    [18]
    吴忠宝,李莉,张家良,等. 低渗透油藏转变注水开发方式研究:以大港油田孔南GD6X1区块为例[J]. 油气地质与采收率,2020,27(5):105–111.

    WU Zhongbao, LI Li, ZHANG Jialiang, et al. Research on transformation of waterflooding development mode in low permeability oil reservoirs: taking GD6X1 Block of Kongnan in Dagang Oilfield as an example[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 105–111.
    [19]
    康毅力,田键,罗平亚,等. 致密油藏提高采收率技术瓶颈与发展策略[J]. 石油学报,2020,41(4):467–477. doi: 10.7623/syxb202004009

    KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J]. Acta Petrolei Sinica, 2020, 41(4): 467–477. doi: 10.7623/syxb202004009
    [20]
    王增林,鲁明晶,张潦源,等. 东营凹陷陆相页岩油强化缝网改造生产制度优化研究[J]. 石油钻探技术,2021,49(4):71–77. doi: 10.11911/syztjs.2021074

    WANG Zenglin, LU Mingjing, ZHANG Liaoyuan, et al. Production system optimization for enhanced fracture network stimulation in continental shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 71–77. doi: 10.11911/syztjs.2021074
  • Related Articles

    [1]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [2]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [3]WANG Chaoming, KONG Lingjun, YUAN Kaixuan, DU Dianfa, BING Shaoxian, LI Mengyun. Evaluation Method of Water Flooding Effect in Reservoirs with Ultra-High Water Cut[J]. Petroleum Drilling Techniques, 2020, 48(3): 108-113. DOI: 10.11911/syztjs.2020020
    [4]ZHANG Wei, HAI Gang, ZHANG Ying. Gas-Water Composite Flooding Technology for Fractured and Vuggy Carbonate Reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 61-65. DOI: 10.11911/syztjs.2019124
    [5]ZHU Zhiqiang, LI Yunpeng, LYU Zuobin, MENG Zhiqiang, YANG Zhicheng. An Analytical Method for Fracture Distribution and Water Production Regularity in a Buried-Hill Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(1): 117-121. DOI: 10.11911/syztjs.2018033
    [6]TAN Wei, ZHANG Hengrong, WANG Lijuan, DING Lei, WU Jinbo. A New Method to Determine the Resistivity of Mixed Liquids in Water-flooded Layers of Oilfields by Water-flooding Development[J]. Petroleum Drilling Techniques, 2017, 45(1): 120-126. DOI: 10.11911/syztjs.201701020
    [7]XUE Jianglong, LIU Yingfei, ZHU Wenping, LI Yang. The Types of Reservoirs Encountered by the Wells in the Halahatang Oilfield and Water Flooding Effects[J]. Petroleum Drilling Techniques, 2016, 44(1): 85-89. DOI: 10.11911/syztjs.201601016
    [8]Wang Wenhuan, Peng Huanhuan, Li Guangquan, Lei Zhengdong, Lü Wenfeng. Research on Water Flooding Dynamic Fractures to Optimize Infill Drilling Spacing in Ultra-Low Permeability Reservoirs,Changqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 106-110. DOI: 10.11911/syztjs.201501018
    [9]Qu Yingxin, Yan Xiaofeng. Optimization of Injection-Production Parameters in Thin Heavy Oil Reservoirs Development of Du66 Block in Jiangqiao through Hot Water Flooding[J]. Petroleum Drilling Techniques, 2013, 41(6): 90-94. DOI: 10.3969/j.issn.1001-0890.2013.06.018
    [10]Jiang Baoyi, Li Zhiping, Ju Yafeng, Wang Xigang, Gan Huohua. Prediction of Dynamic Reserves of Shale Gas with Modified Flow Rate Transient Approach[J]. Petroleum Drilling Techniques, 2012, 40(2): 66-69. DOI: 10.3969/j.issn.1001-0890.2012.02.013
  • Cited by

    Periodical cited type(9)

    1. 邸士莹,赵云飞,马收,魏玉华,程时清,缪立南. 裂缝性致密油藏水平井缝间增产方法. 大庆石油地质与开发. 2025(01): 168-174 .
    2. 石登科,程时清,赵丹凤,汪洋,刘秀伟,徐泽轩. 基于PKN模型的致密油藏注水诱导裂缝数值模拟方法. 油气地质与采收率. 2025(01): 174-185 .
    3. 危常胜. 钻探企业绿色低碳发展思路及建议研究. 石油石化节能与计量. 2024(03): 75-78 .
    4. 宋君,李海燕,宋伟,刘亦菲,李金海,潘悦文,刘俊龙. 水驱油藏乳液中盐水对沥青质沉淀的影响. 特种油气藏. 2024(01): 123-130 .
    5. 刘成林,任杨,孙林,刘伟新,匡腊梅,张强,马喜超. 陆丰油田古近系低渗高温深层储层自源闭式强化注水技术研究与应用. 中国海上油气. 2024(02): 159-166 .
    6. 李忠诚,鲍志东,王洪学,张栋. 基于高压汞灯荧光显微观测的剩余油定量分析方法. 石油钻探技术. 2024(03): 112-117 . 本站查看
    7. 周晋冲,曹仁义,蒲保彪,王继伟,吕柄辰,易琪. 致密油藏多轮次注水吞吐动态应力场及裂缝扩展规律研究. 岩石力学与工程学报. 2024(12): 3005-3017 .
    8. 康少飞,蒲春生,蒲景阳,王凯,黄飞飞,樊乔. 致密油藏暂堵强化注水吞吐及暂堵分流数学模型研究. 油气地质与采收率. 2023(04): 173-182 .
    9. 宋保建,李景全,孙宜丽,张薇,刘鹏. 致密油藏CO_2吞吐参数优化数值模拟研究. 特种油气藏. 2023(04): 113-121 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (501) PDF downloads (54) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return