HOU Yawei, LIU Chao, XU Zhongbo, et al. A method for rapidly predicting recovery of multi-layer oilfields developed by water-flooding [J]. Petroleum Drilling Techniques,2022, 50(5):82-87. DOI: 10.11911/syztjs.2022102
Citation: HOU Yawei, LIU Chao, XU Zhongbo, et al. A method for rapidly predicting recovery of multi-layer oilfields developed by water-flooding [J]. Petroleum Drilling Techniques,2022, 50(5):82-87. DOI: 10.11911/syztjs.2022102

A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding

More Information
  • Received Date: April 11, 2022
  • Revised Date: August 29, 2022
  • Available Online: November 03, 2022
  • In order to quickly and accurately predict the recovery of oilfields developed by water flooding, a method for rapidly predicting oil recovery was established based on a back propagation (BP) neural network optimization algorithm with consideration of factors influencing the recovery, such as reservoir characteristics and fluid properties. Firstly, geological models for numerical reservoir simulation were constructed according to the geological characteristics and fluid properties of Penglai 19-3 Oilfield. Four key factors including coefficient of permeability variation, oil viscosity, net to gross ratio of oil layers, and production pressure differential were selected, with each factor defined into five levels. 625 groups of reservoir simulation cases were analyzed numerically, and a database indicating the relationship between the oil recovery of the cases and the influencing factors was established. Secondly, an artificial neural network (ANN) method for rapidly predicting oil recovery was set up based on BP neural network and optimization theory. Finally, 500 groups of data were selected as the algorithm training set, and 125 groups of data were tested for recovery predicting. The test result showed that the predicted oil recovery of the tested data had a relative error ranging from −2.91% to 5.07% with an average relative error of 0.16%, which met the requirement for engineering accuracy. The method for rapidly predicting recovery of multi-layer oilfields developed by water-flooding provides a new technical approach to rapidly predict the recovery of Penglai 19-3 Oilfield and other similar oilfields.

  • [1]
    薛永安,邓运华,王德英,等. 蓬莱19-3特大型油田成藏条件及勘探开发关键技术[J]. 石油学报,2019,40(9):1125–1146.

    XUE Yongan, DENG Yunhua, WANG Deying, et al. Reservoir formation conditions and key exploration & development technoloiges in PL 19-3 giant oilfield[J]. Acta Petrolei Sinica, 2019, 40(9): 1125–1146.
    [2]
    邓运华,李秀芬. 蓬莱19-3油田的地质特征及启示[J]. 中国石油勘探,2001,6(1):68–71. doi: 10.3969/j.issn.1672-7703.2001.01.016

    DENG Yunhua, LI Xiufen. The geological characters and enlightenment of Penglai 19-3 Oilfield[J]. China Petroleum Exploration, 2001, 6(1): 68–71. doi: 10.3969/j.issn.1672-7703.2001.01.016
    [3]
    张章. 高含水期薄互层状油藏储层精细刻画研究[D]. 西安: 西北大学, 2019: 15-16.

    ZHANG Zhang. Detail characterization study on thin-interbedded reservoirs at high water cut stage[D]. Xi’an: Northwest University, 2019: 15-16.
    [4]
    卢异,夏国朝,吕栋梁,等. 缝洞型火成岩油藏注水提高采收率研究[J]. 特种油气藏,2020,27(1):96–101. doi: 10.3969/j.issn.1006-6535.2020.01.014

    LU Yi, XIA Guochao, LYU Dongliang, et al. Enhancing oil recovery by waterflooding in fracture-cave igneous reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 96–101. doi: 10.3969/j.issn.1006-6535.2020.01.014
    [5]
    王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105–112. doi: 10.11911/syztjs.2021122

    WANG Qinghui, ZHU Ming, FENG Jin, et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105–112. doi: 10.11911/syztjs.2021122
    [6]
    耿昌浩,葛丽萍,构小婷. 童氏图版在采收率预测中的应用与修正[J]. 中国石油和化工标准与质量,2013,33(16):233–235.

    GENG Changhao, GE Liping, GOU Xiaoting. Application and correction of Tong’s chart in oil recovery prediction[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(16): 233–235.
    [7]
    孙强,黄世军,李权. 多层稠油油藏水驱动用程度评价方法[J]. 断块油气田,2020,27(3):323–326.

    SUN Qiang, HUANG Shijun, LI Quan. Evaluation method of water driving degree of multi-layer heavy oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 323–326.
    [8]
    咸玉席,陈超峰,封猛,等. 页岩油藏裂缝网络多相渗流数值模拟研究[J]. 石油钻探技术,2021,49(5):94–100. doi: 10.11911/syztjs.2021090

    XIAN Yuxi, CHEN Chaofeng, FENG Meng, et al. Numerical simulation of multiphase flow in fracture networks in shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94–100. doi: 10.11911/syztjs.2021090
    [9]
    杨金辉,李立,李钟洋,等. 滑脱和应力敏感效应对页岩气开发动态影响的数值模拟研究[J]. 石油钻探技术,2017,45(1):83–90. doi: 10.11911/syztjs.201701015

    YANG Jinhui, LI Li, LI Zhongyang, et al. Numerical simulation on the effects of slippage and stress sensibility on the performance of shale gas development[J]. Petroleum Drilling Techniques, 2017, 45(1): 83–90. doi: 10.11911/syztjs.201701015
    [10]
    王朝明,孔令军,袁凯旋,等. 特高含水后期油藏水驱效果评价方法[J]. 石油钻探技术,2020,48(3):108–113. doi: 10.11911/syztjs.2020020

    WANG Chaoming, KONG Lingjun, YUAN Kaixuan, et al. Evaluation method of water flooding effect in reservoirs with ultra-high water cut[J]. Petroleum Drilling Techniques, 2020, 48(3): 108–113. doi: 10.11911/syztjs.2020020
    [11]
    孙成龙. 水驱曲线上翘时机的判定方法[J]. 石油地质与工程,2014,28(3):69–70.

    SUN Chenglong. Determining method of water drive curve upturning timing[J]. Petroleum Geology and Engineering, 2014, 28(3): 69–70.
    [12]
    陈元千,陶自强. 高含水期水驱曲线的推导及上翘问题的分析[J]. 断块油气田,1997,4(3):19–24.

    CHEN Yuanqian, TAO Ziqiang. Derivation of water drive curve at high water-cut stage and its analysis of upwarding problem[J]. Fault-Block Oil & Gas Field, 1997, 4(3): 19–24.
    [13]
    孙红霞. 高含水期水驱特征曲线上翘新认识[J]. 特种油气藏,2016,23(1):92–95. doi: 10.3969/j.issn.1006-6535.2016.01.020

    SUN Hongxia. New understanding of upward waterflooding characteristic curve in high water-cut stage[J]. Special Oil & Gas Reservoirs, 2016, 23(1): 92–95. doi: 10.3969/j.issn.1006-6535.2016.01.020
    [14]
    严子铭,王涛,柳占立,等. 基于机器学习的页岩气采收率预测方法[J]. 固体力学学报,2021,42(3):221–232. doi: 10.19636/j.cnki.cjsm42-1250/o3.2021.027

    YAN Ziming, WANG Tao, LIU Zhanli, et al. Machine-learning-based prediction methods on shale gas recovery[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 221–232. doi: 10.19636/j.cnki.cjsm42-1250/o3.2021.027
    [15]
    王涛. 人工神经网络在CO2驱采收率预测中的应用[J]. 特种油气藏,2011,18(4):77–79. doi: 10.3969/j.issn.1006-6535.2011.04.021

    WANG Tao. Application of artificial neural network in recovery factor forecast of carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2011, 18(4): 77–79. doi: 10.3969/j.issn.1006-6535.2011.04.021
    [16]
    陈小龙,李宜强,管错,等. 基于量纲分析的优化神经网络模型预测GAGD非混相开发油藏采收率[J]. 石油科学通报,2019,4(3):288–299.

    CHEN Xiaolong, LI Yiqiang, GUAN Cuo, et al. An optimized neural network prediction model for gas assisted gravity drainage recovery based on dimensional analysis[J]. Petroleum Science Bulletin, 2019, 4(3): 288–299.
    [17]
    樊灵,赵孟孟,殷川,等. 基于BP神经网络的油田生产动态分析方法[J]. 断块油气田,2013,20(2):204–206. doi: 10.6056/dkyqt201302017

    FAN Ling, ZHAO Mengmeng, YIN Chuan, et al. Analysis method of oilfield production performance based on BP neural network[J]. Fault-Block Oil & Gas Field, 2013, 20(2): 204–206. doi: 10.6056/dkyqt201302017
    [18]
    何顺利,田冷,顾岱鸿. 改进的神经网络模型在储层敏感性预测中的应用[J]. 石油钻探技术,2006,34(1):28–31. doi: 10.3969/j.issn.1001-0890.2006.01.008

    HE Shunli, TIAN Leng, GU Daihong. Improved neural network model predicts formation sensitivity[J]. Petroleum Drilling Techniques, 2006, 34(1): 28–31. doi: 10.3969/j.issn.1001-0890.2006.01.008
    [19]
    邢明海,陈祥光,王渝. 基于人工神经网络组合预测油田产量[J]. 计算机仿真,2004,21(5):116–120. doi: 10.3969/j.issn.1006-9348.2004.05.034

    XING Minghai, CHEN Xiangguang, WANG Yu. Oilfield output’s combined forecast based on artificial neural networks[J]. Computer Simulation, 2004, 21(5): 116–120. doi: 10.3969/j.issn.1006-9348.2004.05.034
    [20]
    REN Ningning, FAN Le, ZHANG Zan. Sensorless PMSM control with sliding mode observer based on sigmoid function[J]. Journal of Electrical Engineering & Technology, 2021, 16(2): 933–939.
    [21]
    ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3–11. doi: 10.1016/j.neunet.2017.12.012
    [22]
    LI Rongyu, RUAN Yongfen, LI Shisheng, et al. Study on deformation prediction of landslide based on grey theory and BP neural network[J]. Applied Mechanics and Materials, 2012, 204/205/206/207/ 208: 520–525. doi: 10.4028/www.scientific.net/AMM.204-208.520
    [23]
    YETILMEZSOY K, TURKDOGAN F I, TEMIZEL I, et al. Development of ANN-based models to predict biogas and methane productions in anaerobic treatment of molasses wastewater[J]. International Journal of Green Energy, 2013, 10(9): 885–907. doi: 10.1080/15435075.2012.727116
    [24]
    张良杰,李衍达,陈惠民. 基于变尺度寻优和遗传搜索技术的模糊神经网络全局学习算法[J]. 电子学报,1996,24(11):6–115. doi: 10.3321/j.issn:0372-2112.1996.11.003

    ZHANG Liangjie, LI Yanda, CHEN Huimin. A new global learning algorithm for fuzzy neural networks based on modified quasi-newton method and genetic searching techniques[J]. Acta Electronica Sinica, 1996, 24(11): 6–115. doi: 10.3321/j.issn:0372-2112.1996.11.003
    [25]
    MIRJALILI S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1
    [26]
    吴伟民,吴汪洋,林志毅,等. 基于增强个体信息交流的蜻蜓算法[J]. 计算机工程与应用,2017,53(4):10–14.

    WU Weimin, WU Wangyang, LIN Zhiyi, et al. Dragonfly algo-rithm based on enhancing exchange of individuals’ information[J]. Computer Engineering and Applications, 2017, 53(4): 10–14.
  • Related Articles

    [1]ZHANG Heng, YUAN Guangjie, NI Hongjian, YANG Henglin, FU Li, WANG Yuan. Experimental Study on Suppression of Stick-slip Vibration of PDC Bit by Composite Impact Load[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025007
    [2]PENG Qi, ZHOU Yingcao, ZHOU Bo, LIU Chuanfu, LIU Yu. Development and Field Test of a Non-Planar Cutter PDC Bit with Convex Ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49-55. DOI: 10.11911/syztjs.2020035
    [3]TIAN Jingyan, XU Yuchao. Design and Field Application of a Micro-Coring PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(1): 65-68. DOI: 10.11911/syztjs.2018134
    [4]LIN Siyuan, LI Zhong, HUANG Yi, CHEN Haodong, YANG Yuhao, GAO Jiji. Technique for Enhancing the Rate of Penetration through the Application of a New PDC Bit with Rotary Cutters in Deep Formations in the Wenchang Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 65-69. DOI: 10.11911/syztjs.201706012
    [5]YAN Yan, GUAN Zhichuan, XUAN Lingchao, HU Huaigang, ZHUANG Li. Experimental Study on Rock Breaking Efficiency with a PDC Bit under Conditions of Composite Percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24-30. DOI: 10.11911/syztjs.201706005
    [6]Yang Shunhui, Wu Haojie, Niu Chengcheng, Hou Xutian, Jin Junbin. Manufacture and Application of PDC Bit Enhanced by Special Diamond-Impregnated Segment[J]. Petroleum Drilling Techniques, 2014, 42(6): 111-114. DOI: 10.11911/syztjs.201406022
    [7]Li Guangguo, Suo Zhongwei, Wang Jinrong, Zhou Yucang, Gao Changbin. Improve ROP with Hydraulic Percussion Hammer and PDC Bit in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 71-75. DOI: 10.3969/j.issn.1001-0890.2013.05.014
    [8]Yang Yongyin, Niu Sicheng, Xu Xiqiang. Experimental Study of Combined-Jet PDC Bit[J]. Petroleum Drilling Techniques, 2012, 40(5): 100-105. DOI: 10.3969/j.issn.1001-0890.2012.05.022
    [9]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
    [10]Xiao Guoyi, Hu Daliang, Liao Zhonghui, Wang Xiyong, Li Qunsheng. Parameter Optimization and Selection of PDC Bits for Xujiahe Formation in Western Sichuan[J]. Petroleum Drilling Techniques, 2012, 40(3): 28-32. DOI: 10.3969/j.issn.1001-0890.2012.03.006

Catalog

    Article Metrics

    Article views (169) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return