LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
Citation: LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032

A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects

More Information
  • Received Date: October 30, 2020
  • Revised Date: March 03, 2021
  • Available Online: March 10, 2021
  • To accurately evaluate the impact of the non-Darcy and stress-sensitivity effects on the productivity of fractured carbonate gas wells, a new dual-media binomial productivity model for radial compound reservoirs was established. The model is divided into an inner zone and an outer zone, in which the inner zone is designed to simulate the production process of gas wells after fracturing treatment. The new model is used to calculate the productivity of a well in a fractured carbonate gas reservoir in the Sichuan Basin. The calculation results showed that the model can predict the absolute open flow of gas wells in fractured carbonate reservoirs more reasonably and has achieved better field application results than the one-point method. According to the parameter sensitivity analysis, stress sensitivity factors mainly influence the late production stage of gas wells, and the formation coefficient plays an important role in influencing the absolute open flow, which demonstrates that formations with higher permeability and thickness are more favorable to the development of gas wells. The productivity prediction model of fractured carbonate gas reservoirs, which comprehensively considers non-Darcy and stress-sensitive effects, can provide a theoretical basis for the efficient development and reasonable production allocation of gas reservoirs.
  • [1]
    SMITH M B, BALE A, BRITT L K, et al. An investigation of non-Darcy flow effects on hydraulic fractured oil and gas well performance[R]. SPE 90864, 2004.
    [2]
    张鹏,吴通,李中,等. BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J]. 石油钻采工艺,2020,42(5):622–626.

    ZHANG Peng, WU Tong, LI Zhong, et al. Application of BP neural network method to predict the stress sensitivity of ultra deep carbonate reservoir in Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 622–626.
    [3]
    ZHANG Qi, SU Yuliang, WANG Wendong, et al. A new semi-analytical model for simulating the effectively stimulated volume of fractured wells in tight reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27(3): 1834–1845.
    [4]
    陈军,刘太雷,任洪明. 考虑非达西流动影响的底水气藏产能新方法[J]. 特种油气藏,2019,26(2):91–95.

    CHEN Jun, LIU Tailei, REN Hongming. A new bottom-aquifer reservoir productivity equation based on non-darcy flow[J]. Special Oil & Gas Reservoirs , 2019, 26(2): 91–95.
    [5]
    杨滨,姜汉桥,陈民锋,等. 应力敏感气藏产能方程研究[J]. 西南石油大学学报(自然科学版),2008,30(5):158–160.

    YANG Bin, JIANG Hanqiao, CHEN Minfeng, et al. Deliverability equation for stress-sensitive gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 158–160.
    [6]
    温伟明,朱绍鹏,李茂. 海上异常高压气藏应力敏感特征及产能方程:以莺歌海盆地为例[J]. 天然气工业,2014,34(9):59–63.

    WEN Weiming, ZHU Shaopeng, LI Mao. Stress sensitivity features and productivity equations of offshore abnormal high-pressure gas reservoirs: a case study from the Yinggehai Basin[J]. Natural Gas Industry, 2014, 34(9): 59–63.
    [7]
    邓佳,朱维耀,刘锦霞,等. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学,2013,24(3):456–460, 638.

    DENG Jia, ZHU Weiyao, LIU Jingxia, et al. Productivity prediction model of shale gas considering stress sensitivity[J]. Natural Gas Geoscience, 2013, 24(3): 456–460, 638.
    [8]
    JIANG Liwu, LIU Tongjing, YANG Daoyong. Effect of stress-sensitive fracture conductivity on transient pressure behavior for a horizontal well with multistage fractures[J]. SPE Journal, 2019, 24(3): 1342–1363. doi: 10.2118/194509-PA
    [9]
    HUANG Shijun, DING Guangyang, WU Yonghui, et al. A semi-analytical model to evaluate productivity of shale gas wells with complex fracture networks[J]. Journal of Natural Gas Science & Engineering, 2018, 50: 374–383.
    [10]
    黄天坤,王德龙,王丽影,等. 双重介质页岩气藏水平井压力动态特征[J]. 成都理工大学学报(自然科学版),2019,46(2):212–220.

    HUANG Tiankun, WANG Delong, WANG Liying, et al. Study on the pressure dynamic feature of horizontal wells in dual-porosity shale gas reservoir[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(2): 212–220.
    [11]
    姜瑞忠,原建伟,崔永正,等. 考虑岩石变形的页岩气藏双重介质数值模拟[J]. 油气地质与采收率,2019,26(4):70–76.

    JIANG Ruizhong, YUAN Jianwei, CUI Yongzheng, et al. Dual media numerical simulation of shale gas reservoirs considering rock deformation[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 70–76.
    [12]
    赵海洋,贾永禄,蔡明金,等. 低渗透双重介质垂直裂缝井产能分析[J]. 西南石油大学学报(自然科学版),2009,31(2):71–73.

    ZHAO Haiyang, JIA Yonglu, CAI Mingjin, et al. Deliverability analysis of vertical fracture wells in low permeability dual porosity reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(2): 71–73.
    [13]
    蔡建超,郭士礼,游利军,等. 裂缝–孔隙型双重介质油藏渗吸机理的分形分析[J]. 物理学报,2013,62(1):220–224.

    CAI Jianchao, GUO Shili, YOU Lijun, et al. Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir[J]. Acta Physica Sinica, 2013, 62(1): 220–224.
    [14]
    XUE Yi, TENG Teng, DANG Faning, et al. Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20240–20249. doi: 10.1016/j.ijhydene.2019.11.146
    [15]
    王建忠,姚军,张凯,等. 变渗透率模量与双重孔隙介质的压力敏感性[J]. 中国石油大学学报(自然科学版),2010,34(3):80–83, 88.

    WANG Jianzhong, YAO Jun, ZHANG Kai, et al. Variable permeability modulus and pressure sensitivity of dual-porosity medium[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(3): 80–83, 88.
    [16]
    WANG Wendong, FAN Dian, SHENG Guanglong, et al. A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs[J]. Fuel, 2019, 256: 115737. doi: 10.1016/j.fuel.2019.115737
    [17]
    WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245–255. doi: 10.2118/426-PA
    [18]
    高树生,刘华勋,任东,等. 缝洞型碳酸盐岩储层产能方程及其影响因素分析[J]. 天然气工业,2015,35(9):48–54.

    GAO Shusheng, LIU Huaxun, REN Dong, et al. Deliverability equation of fracture-cave carbonate reservoirs and its influential factors[J]. Natural Gas Industry, 2015, 35(9): 48–54.
    [19]
    姜瑞忠,高岳,孙召勃,等. 双重介质低渗油藏偏心压裂直井井底压力特征[J]. 断块油气田,2020,27(6):778–783.

    JIANG Ruizhong, GAO Yue, SUN Zhaobo, et al. Bottom pressure characteristics for eccentric fracture vertical well in dual-medium low-permeability reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 778–783.
  • Related Articles

    [1]GUO Jianchun, ZHAO Feng, ZHAN Li, ZHANG Hang, ZENG Jie. Recent Advances and Development Suggestions of Temporary Plugging and Diverting Fracturing Technology for Shale Gas Reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170-183. DOI: 10.11911/syztjs.2023039
    [2]XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
    [3]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [4]ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. DOI: 10.11911/syztjs.2018058
    [5]LAN Chengyu, DING Yuqi, LIU Jubao, DAI Ziwei, ZHOU Huiyu, LIU Yuxi. Force Analysis and Test of Bridge Plug Drilling[J]. Petroleum Drilling Techniques, 2018, 46(1): 68-74. DOI: 10.11911/syztjs.2018032
    [6]GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
    [7]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [8]Jia Changgui. Evaluation on Conductivity Performance of Proppant in Shale Gas Network Fracturing[J]. Petroleum Drilling Techniques, 2014, 42(5): 42-46. DOI: 10.11911/syztjs.201405007
    [9]Jiang Tingxue, Bian Xiaobing, Yuan Kai, Zhou Linbo. A New Method in Staged Fracturing Design Optimization for Shale Gas Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2014.02.001
    [10]Liu Yinshan, Li Zhiping, Lai Fengpeng, Ma Hongze, Ren Guanglei. Productivity Prediction Model of Horizontal Gas Wells with Noncoplanar Fractures[J]. Petroleum Drilling Techniques, 2012, 40(4): 96-101. DOI: 10.3969/j.issn.1001-0890.2012.04.019
  • Cited by

    Periodical cited type(5)

    1. 徐勤亮,陈景皓,高强,汪利伟,李忠利. 低温环境下海洋输油橡胶软管的扭转性能. 科学技术与工程. 2024(25): 10755-10761 .
    2. 王宇哲,张凯,杨甘生,李亚洲. 南极钻机的耐温材料和保温方式的优选. 钻探工程. 2023(S1): 82-89 .
    3. 孟广伟,骆青,钟声,孟广福. 石油化工管道接头橡胶防腐密封材料研究. 化学与粘合. 2022(04): 336-340 .
    4. 王宴滨,张辉,高德利,柯珂,刘文红. 低温环境下钻柱材料力学特性试验及强度设计. 石油钻探技术. 2021(03): 35-41 . 本站查看
    5. 顾铖璋. 深冷环境下密封橡胶的力学性能研究. 橡胶科技. 2021(08): 375-381 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (748) PDF downloads (97) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return