Citation: | LU Yipan, WEI Yong, CHEN Qiang, et al. Downhole flow rate measurement method based on the time domain integral of heat conduction [J]. Petroleum Drilling Techniques,2023, 51(1):106-114. DOI: 10.11911/syztjs.2022118 |
In light of the difficulties in measuring the flow rate of low-productivity producers in oil fields, the heat conduction effect caused by ambient fluid around the detector in the whole measurement cycle was adopted, a downhole flow rate measurement method based on time domain integral of heat transfer was put forward according to multiphase fluid thermodynamic theory. First, intermittent constant power heating was used to provide periodic energy to the detector. Then, an integral method was employed to calculate and analyze the variation of the internal temperature variation law of the detector with the external fluid flow during heating and cooling. The theoretical analysis and experimental study showed that the time domain integral area had an excellent correlation with the flow rate, and had high resolution under low flow rate condition. The problem that traditional turbine flowmeters lose their capability of detection as their turbines couldn’t be activated under low flow rate was solved with this method. The downhole flow rate measurement method based on the time domain integral of heat conduction has promoted the development of oil-water two-phase flow detection technology. It has provided a new technical means for flow rate measurement of low-productivity producers.
[1] |
AMINA B, AHMED H. An overview of thermal mass flowmeters applicability in oil and gas industry[J]. Energy Procedia, 2017, 141: 299–303. doi: 10.1016/j.egypro.2017.11.109
|
[2] |
李群生,朱礼平,李果,等. 基于井下流量测量的微流量控制系统[J]. 石油钻探技术,2012,40(3):23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
LI Qunsheng, ZHU Liping, LI Guo, et al. Micro-flow control system based on downhole flow measurement[J]. Petroleum Drilling Techniques, 2012, 40(3): 23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
|
[3] |
王江帅,李军,柳贡慧,等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术,2020,48(4):43–49. doi: 10.11911/syztjs.2020043
WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Study on the change law of annular outlet flow rate in new-type dual-gradient drilling under gas cut condition[J]. Petroleum Drilling Techniques, 2020, 48(4): 43–49. doi: 10.11911/syztjs.2020043
|
[4] |
杨玲智,周志平,杨海恩,等. 桥式同心井下恒流分层注水技术[J]. 石油钻探技术,2022,50(4):104–108. doi: 10.11911/syztjs.2022051
YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104–108. doi: 10.11911/syztjs.2022051
|
[5] |
王鲁海,李军,关松,等. 低流量条件下涡轮流量计的黏度响应特性[J]. 测井技术,2012,36(4):336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002
WANG Luhai, LI Jun, GUAN Song, et al. The performance of turbine flowmeter with viscosity changes under low flow condition[J]. Well Logging Technology, 2012, 36(4): 336–339. doi: 10.3969/j.issn.1004-1338.2012.04.002
|
[6] |
王月明,贾华,李文涛,等. 管道对电磁流量计敏感场影响研究[J]. 仪表技术与传感器,2017(7):29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009
WANG Yueming, JIA Hua, LI Wentao, et al. Influence study of pipelines on electromagnetic flow meter sensitive field[J]. Instrument Technique and Sensor, 2017(7): 29–31. doi: 10.3969/j.issn.1002-1841.2017.07.009
|
[7] |
张易农,彭静,程耀华,等. 多种超声流量计对气液两相流流量计量的试验研究[J]. 中国测试,2017,43(9):143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026
ZHANG Yinong, PENG Jing, CHENG Yaohua, et al. Experimental study on gas-liquid two-phase flow measurement by using multiple ultrasonic flowmeter[J]. China Measurement & Testing Technology, 2017, 43(9): 143–147. doi: 10.11857/j.issn.1674-5124.2017.09.026
|
[8] |
张德政,王志彬,于志刚,等. 高液气比气井临界携液流量计算方法[J]. 断块油气田,2022,29(3):411–416.
ZHANG Dezheng, WANG Zhibin, YU Zhigang, et al. Calculation method of critical liquid-carrying flow rate of high liquid-gas ratio gas well[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 411–416.
|
[9] |
KIM T H, KIM D K, KIM S J. Study of the sensitivity of a thermal flow sensor[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2140–2144.
|
[10] |
BEKRAOUI A, HADJADJ A. Thermal flow sensor used for thermal mass flowmeter[J]. Microelectronics Journal, 2020, 103: 104871. doi: 10.1016/j.mejo.2020.104871
|
[11] |
姜兆宇. 热式质量流量计应用于井下液相流量测量研究[D]. 大庆: 东北石油大学, 2013.
JIANG Zhaoyu. The research of thermal mass flowmeter applied to downhole liquid flow rate measurment[D]. Daqing: Northeast Petroleum University, 2013.
|
[12] |
汪栋良,余厚全,杨旭辉,等. 井下恒功率热式流量计设计与实现[J]. 石油管材与仪器,2018,4(2):20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006
WANG Dongliang, YU Houquan, YANG Xuhui, et al. Design and implementation of downhole constant power thermal flowmeter[J]. Petroleum Tubular Goods & Instruments, 2018, 4(2): 20–23. doi: 10.19459/j.cnki.61-1500/te.2018.02.006
|
[13] |
马杰. 基于恒功率原理的核电级热式质量流量计研制[D]. 合肥: 合肥工业大学, 2021.
MA Jie. Development of nuclear thermal mass flowmeter based on constant power principle[D]. Hefei: Hefei University of Technology, 2021.
|
[14] |
范宋杰,魏勇,余厚全,等. 阵列恒温差热式流量计的设计与开发[J]. 科学技术与工程,2021,21(18):7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016
FAN Songjie, WEI Yong, YU Houquan, et al. Design and development of a constant temperature differential thermal flowmeter with sensor array[J]. Science Technology and Engineering, 2021, 21(18): 7513–7518. doi: 10.3969/j.issn.1671-1815.2021.18.016
|
[15] |
张夷非,魏勇,余厚全,等. 恒温差热式流量计影响因素模拟与试验研究[J]. 石油钻探技术,2021,49(2):121–126. doi: 10.11911/syztjs.2021023
ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental studies on the influencing factors of a thermal flowmeter with constant temperature difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121–126. doi: 10.11911/syztjs.2021023
|
[16] |
汪余景,翟军勇. 基于恒温差的热式空气流量计[J]. 仪表技术与传感器,2017(6):41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011
WANG Yujing, ZHAI Junyong. Thermal air flow meter based on constant temperature difference[J]. Instrument Technique and Sensor, 2017(6): 41–43. doi: 10.3969/j.issn.1002-1841.2017.06.011
|
[17] |
JIANG Junhao, CAO Shaozhong. The design of novel thermal gas mass flowmeter[J]. Applied Mechanics and Materials, 2012, 224: 435–439. doi: 10.4028/www.scientific.net/AMM.224.435
|
[18] |
戴卓勋. 基于热传导的恒温差式低产液量检测仪研制[D]. 西安: 西安石油大学, 2021.
DAI Zhuoxun. Development of low liquid yield detector with constant temperature difference based on heat conduction[D]. Xi’an: Xi’an Shiyou University, 2021.
|
[19] |
贾惠芹,戴卓勋,陈强,等. 井下恒温差热式液体流量计[J]. 石油钻采工艺,2021,43(6):817–822. doi: 10.13639/j.odpt.2021.06.020
JIA Huiqin, DAI Zhuoxun, CHEN Qiang, et al. Downhole constant temperature difference thermal liquid flowmeter[J]. Oil Drilling & Production Technology, 2021, 43(6): 817–822. doi: 10.13639/j.odpt.2021.06.020
|
[20] |
蔡晖,刘英宪,马奎前,等. 海上油藏流场评价方法[J]. 特种油气藏,2021,28(4):129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018
CAI Hui, LIU Yingxian, MA Kuiqian, et al. Study on evaluation method of flow field in offshore oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 129–135. doi: 10.3969/j.issn.1006-6535.2021.04.018
|
[21] |
张夷非,魏勇,余厚全,等. 恒温差热式流量计分段PID控制的仿真与实验[J]. 测井技术,2021,45(3):284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010
ZHANG Yifei, WEI Yong, YU Houquan, et al. Simulation and experimental research on segmented PID control of constant temperature differential thermal flowmeter[J]. Well Logging Technology, 2021, 45(3): 284–289. doi: 10.16489/j.issn.1004-1338.2021.03.010
|
1. |
易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 .
![]() | |
2. |
徐磊,侯彬彬,董丽娜,高宇行. 靖边区域钻井提速技术. 中国石油和化工标准与质量. 2024(04): 177-179 .
![]() | |
3. |
王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 .
![]() | |
4. |
任海涛,王新东,张昕,杨迎新,苏涛,王柏辉,周广静. PDC钻头数字化选型技术及软件开发. 石油机械. 2024(05): 9-16 .
![]() | |
5. |
胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 .
![]() | |
6. |
刘湘华,于洋,刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议. 石油钻探技术. 2024(02): 72-77 .
![]() | |
7. |
刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 .
![]() | |
8. |
李一岚. 顺北超深超高温油气藏钻完井提速关键技术. 石油钻探技术. 2024(03): 21-27 .
![]() | |
9. |
苏前荣,刘伟,张立军,刘松,刘长江,高蓬,纪照生. 顺北奥陶系漏失层钻井液关键技术研究. 内蒙古石油化工. 2024(12): 86-90 .
![]() | |
10. |
李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 .
![]() |