LI Wandong. Cementing Technology Applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74-80. DOI: 10.11911/syztjs.2020109
Citation: LI Wandong. Cementing Technology Applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74-80. DOI: 10.11911/syztjs.2020109

Cementing Technology Applied in the Parahuacu Oilfield of Ecuador

More Information
  • Received Date: March 12, 2020
  • Revised Date: August 06, 2020
  • Available Online: October 08, 2020
  • When cementing a well in the Parahuacu oilfield of Ecuador, edge-bottom-water channeling is very likely to occur in the second interface in which cement slurry filtrate and solid particles easily intrude into the reservoir pore throat, and cement slurry with conventional density may leak into the reservoir. To solve those problems, an acidic flush fluid, a temporary plugging spacer and an interfacial cementing enhancer were developed through simulated flushing tests. Keeping those factors in mind, a multi-effect cementing pad fluid was prepared with them. A low-density cement slurry containing anti-channeling latex was developed with a micro hollow glass ball while considering the liquid-solid ratio, fluid loss control and anti-channeling performance. Indoor testing results show that by using the multi-effect cementing pad fluid, 95.0% structural mud cake on the sidewall was removed, the permeability recovery of the reservoir reached over 90.0%, the interfacial cementing strength increased more than 5 times. The cement slurry with anti-channeling latex has a density of 1.74 kg/L, its performance is stable, API fluid loss does not exceed 20 mL and static gel strength transition time is less than 10 min. The newly developed cementing technology, including the above-mentioned pad fluid, cement slurry and relevant supporting technical measures (such as centralizer placement, displacement scheme design), was then applied to 5 wells in Parahuacu oilfield. In the field application, casing centralization was up to 85.8%, annulus displacement efficiency of cement slurry exceeded 95.0%, no leakage of cement slurry or edge-bottom-water channeling was found in the reservoir. The new cementing technology in the Parahuacu oilfield has achieved significant effect and can solve existing problems in reservoir cementing.
  • [1]
    赵峰,唐洪明,孟英峰,等. 保护高孔高渗储层的钻井完井液体系[J]. 钻井液与完井液,2008,25(1):9–11. doi: 10.3969/j.issn.1001-5620.2008.01.004

    ZHAO Feng, TANG Hongming, MENG Yingfeng, et al. Researches on drilling and completion fluids protecting high porosity and high permeability reservoirs[J]. Drilling Fluid & Completion Fluid, 2008, 25(1): 9–11. doi: 10.3969/j.issn.1001-5620.2008.01.004
    [2]
    谭文礼,王翀,徐玲. BCS隔离液室内研究[J]. 石油天然气学报,2006,28(1):81–83. doi: 10.3969/j.issn.1000-9752.2006.01.026

    TAN Wenli, WANG Chong, XU Ling. BCS isolation fluid laboratory research[J]. Journal of Oil and Gas Technology, 2006, 28(1): 81–83. doi: 10.3969/j.issn.1000-9752.2006.01.026
    [3]
    孙明波,侯万国,孙德军,等. 钾离子稳定井壁作用机理研究[J]. 钻井液与完井液,2005,22(5):7–9.

    SUN Mingbo, HOU Wanguo, SUN Dejun, et al. Mechanism study on the potassium ion stabilizing wellbore[J]. Drilling Fluid & Completion Fluid, 2005, 22(5): 7–9.
    [4]
    张绍俊,张晓兵,徐三峰,等. 塔里木油田碎屑岩固井水泥浆储层损害实验研究[J]. 钻采工艺,2018,41(1):19–21. doi: 10.3969/J.ISSN.1006-768X.2018.01.06

    ZHANG Shaojun, ZHANG Xiaobing, XU Sanfeng, et al. Experimental study on formation damage in clastic rock reservoirs in Tarim Oilfield caused by cementing slurry[J]. Drilling & Production Technology, 2018, 41(1): 19–21. doi: 10.3969/J.ISSN.1006-768X.2018.01.06
    [5]
    马二龙,都诚,刘亦凡,等. 煤层气水平井聚合物钻井液对煤层损害试验研究[J]. 长江大学学报(自然科学版),2019,16(12):54–57.

    MA Erlong, DU Cheng, LIU Yifan, et al. Testing study on damage of polymer drilling fluid to coalbed methane horizontal well[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(12): 54–57.
    [6]
    姜涛. 表面活性剂型可加重固井前置液作用机理及应用[J]. 钻井液与完井液,2018,35(1):83–88. doi: 10.3969/j.issn.1001-5620.2018.01.016

    JIANG Tao. Study and application of mechanisms weightable surfactant treated preflush for well cementing[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 83–88. doi: 10.3969/j.issn.1001-5620.2018.01.016
    [7]
    魏裕森,韦红术,张俊斌,等. 碳酸钙粒径匹配对储层保护效果的影响研究[J]. 长江大学学报(自然科学版),2015,12(14):51–54.

    WEI Yusen, WEI Hongshu, ZHANG Junbin, et al. Study on the influence of calcium carbonate particle size matching on reservoir protection effect[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(14): 51–54.
    [8]
    罗向东,罗平亚. 屏蔽式暂堵技术在储层保护中的应用研究[J]. 钻井液与完井液,1992,9(2):19–27.

    LUO Xiangdong, LUO Pingya. Application of shielded temporary blocking technology in reservoir protection[J]. Drilling Fluid & Completion Fluid, 1992, 9(2): 19–27.
    [9]
    滕兆键, 邢秀萍, 常燕. 空心玻璃微珠低密度水泥浆的初步研究[J]. 钻井液与完井液, 2011, 28(增刊1): 23-25.

    TENG Zhaojian, XING Xiuping, CHANG Yan. A preliminary study of hollow glass microsphere low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2011, 28(supplement 1): 23-25.
    [10]
    宋本岭,张明昌,牟忠信,等. 水泥浆滤液对油气层的损害分析及保护技术[J]. 石油钻采工艺,2005,27(1):27–28. doi: 10.3969/j.issn.1000-7393.2005.01.008

    SONG Benling, ZHANG Mingchang, MOU Zhongxin, et al. Hydrocarbon reservoir damage and protective technology of slurry filtrate[J]. Oil Drilling & Production Technology, 2005, 27(1): 27–28. doi: 10.3969/j.issn.1000-7393.2005.01.008
    [11]
    邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20–23. doi: 10.3969/j.issn.1001-5620.2005.02.006

    ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2): 20–23. doi: 10.3969/j.issn.1001-5620.2005.02.006
    [12]
    刘钰龙. 触变早凝膨胀水泥浆体系在厄瓜多尔TAMBOCOCHA区块尾管固井中的应用[J]. 钻井液与完井液,2019,36(6):754–758.

    LIU Yulong. Application of thixotropic early-setting expanding cement slurry in cementing liner string in block TAMBOCOCHA, Ecuador[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 754–758.
    [13]
    靳建洲,孙富全,侯薇,等. 胶乳水泥浆体系研究与应用[J]. 钻井液与完井液,2006,23(2):37–39, 46. doi: 10.3969/j.issn.1001-5620.2006.02.011

    JIN Jianzhou, SUN Fuquan, HOU Wei, et al. Study and application of latex cement slurry system[J]. Drilling Fluid & Completion Fluid, 2006, 23(2): 37–39, 46. doi: 10.3969/j.issn.1001-5620.2006.02.011
    [14]
    韦庭从,郭小阳,程小伟,等. 卡拉赞巴斯油田浅层调整井防窜固井技术[J]. 石油钻采工艺,2015,37(5):49–53.

    WEI Tingcong, GUO Xiaoyang, CHENG Xiaowei, et al. Anti-channeling cementing technology for shallow adjustment wells in Karazhanbas Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(5): 49–53.
    [15]
    卢海川,赵岳,宋伟宾,等. 新型固井用防水窜材料的研究与性能评价[J]. 钻井液与完井液,2017,34(4):75–79, 84. doi: 10.3969/j.issn.1001-5620.2017.04.0014

    LU Haichuan, ZHAO Yue, SONG Weibin, et al. Study and evaluation of a new anti-water channeling material for well cementing[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 75–79, 84. doi: 10.3969/j.issn.1001-5620.2017.04.0014
  • Related Articles

    [1]ZENG Hao, JIN Yan, WANG Haibo. Damage Mechanism and Countermeasures for Tight Oil Reservoirs in Ningdong Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 62-68. DOI: 10.11911/syztjs.2023109
    [2]ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, LIU Hailong, LI Jin. Integrated Geology-Engineering Early Warning Technologies for Lost Circulation of Fractured Reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 72-77. DOI: 10.11911/syztjs.2022025
    [3]CAO Hui, LI Baojun, ZHAO Xiangyang. Drilling Fluid Technology for Horizontal Wells in Ecuador Tambococha Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 54-59. DOI: 10.11911/syztjs.2021104
    [4]XIE Chunlai, HU Qingfu, ZHANG Fengchen, BAI Zhongwei, YIN Chuanming, SI Xiaodong. Antileaking and Lost Circulation Control Technology for the Mishrif Carbonate Reservoir in the Halfaya Oilfield of Iraq[J]. Petroleum Drilling Techniques, 2021, 49(1): 41-46. DOI: 10.11911/syztjs.2020125
    [5]ZHOU Dan, XIONG Xudong, HE Junbang, DONG Bo, HE Yong. Multi-Stage Deflective Fracturing Technology for Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077
    [6]HAN Laiju, LI Gongrang. Progress, Development Trends, and Outlook for Drilling Environmental Protection Technologies in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 89-94. DOI: 10.11911/syztjs.2019057
    [7]SU Yang. Long-Barrel Coring Technique for the Mishrif Reservoir in the Garraf Oilfield,Iraq[J]. Petroleum Drilling Techniques, 2017, 45(5): 30-35. DOI: 10.11911/syztjs.201705006
    [8]LIU Yun, WANG Tao, YU Xiaolong, NIU Meng. Cementation Technology for Low-Pressure Formations Susceptible to Lost Circulation in Western Area of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(4): 53-58. DOI: 10.11911/syztjs.201704009
    [9]Wei Dianju, Jin Junbin, He Qingshui. Fluid Technology for Drilling Horizontal Wells in the High Permeability Carbonate Reservoir of the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 23-28. DOI: 10.11911/syztjs.201503005
    [10]Kong Zhigang, Yu Xi. Coring Techniques for Buried Hill Reservoirs in Liaohe Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(3): 50-54. DOI: 10.3969/j.issn.1001-0890.2014.03.010
  • Cited by

    Periodical cited type(2)

    1. 彭越,张满郎,李明秋,万玉金,李昱宏,张静平,滕柏路,牛梦瑶,罗万静. 基于图像识别技术的裂缝发育程度定量评价新方法——以安岳气田须二气藏为例. 非常规油气. 2024(01): 12-21 .
    2. 许孝凯. 声波远探测测井与地震缝洞精细评价技术. 应用声学. 2023(06): 1185-1191 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (759) PDF downloads (72) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return