ZHANG Weiguo, CAO Bobo, JIN Hao, WANG Honglin, MA Pengjie, GAO Yonghai. The Setting Depth of the Testing Safety Valve in Deepwater Oil and Gas Wells for Gas Hydrate Blockage Prevention[J]. Petroleum Drilling Techniques, 2019, 47(4): 110-115. DOI: 10.11911/syztjs.2019045
Citation: ZHANG Weiguo, CAO Bobo, JIN Hao, WANG Honglin, MA Pengjie, GAO Yonghai. The Setting Depth of the Testing Safety Valve in Deepwater Oil and Gas Wells for Gas Hydrate Blockage Prevention[J]. Petroleum Drilling Techniques, 2019, 47(4): 110-115. DOI: 10.11911/syztjs.2019045

The Setting Depth of the Testing Safety Valve in Deepwater Oil and Gas Wells for Gas Hydrate Blockage Prevention

More Information
  • Received Date: November 28, 2018
  • Revised Date: February 25, 2019
  • Available Online: March 25, 2019
  • During the testing of deep water oil and gas wells, gas hydrate is prone to block downhole safety valves. To prevent it from happening, a method for determining the reasonable setting depth of safety valve was studied. The gas hydrate phase of equilibrium micro-test device was used to simulate the phase transition process of multi-component gas hydrates under various formation water salinities in the laboratory and to obtain the influencing law of temperature and pressure on the phase equilibrium of gas hydrate. The effects of gas composition, water depth, the geothermal gradient and wellhead pressure on the formation of gas hydrate were analyzed to predict the formation area of gas hydrate, and the method in determining the minimum setting depth of safety valve was obtained from the aspects of safety and cost. Studies suggest that all the factors including gas composition, water depth, geothermal gradient, and wellhead pressure could affect the setting depth of safety valve, and the increased contents of ethane, propane and butane in the produced gas are more likely to form gas hydrates. In addition, the setting depth of the safety valve will be further lower as deeper water depth, smaller geothermal gradient, higher wellhead pressure, and larger gas hydrate formation area. The results of this study could provide a reference for determining the setting depth of test safety valve in deep water oil and gas wells.

  • [1]
    SLOAN E D, KOH C A. Clathrate hydrates of natural gas[M]. 3rd ed. Boca Raton: CRC Press, 2007: 1-11.
    [2]
    关利军,任金山,孙宝江,等. 深水气井测试水合物抑制剂优选及注入方法[J]. 中国海上油气, 2014, 26(2): 55–60.

    GUAN Lijun, REN Jinshan, SUN Baojiang, et al. An optimization and of hydrate inhibitors and its injection method for the testing of deep water gas wells[J]. China Offshore Oil and Gas, 2014, 26(2): 55–60.
    [3]
    SY/T 10024—1998 井下安全阀系统的设计、安装、修理和操作的推荐作法[S].

    SY/T 10024—1998 Recommended practice for design, installation, repair and operation of subsurface safety valve system[S].
    [4]
    谢梅波,岳江河,王海东. 各类井下安全阀系统的特点及安装设计概述[J]. 中国海上油气(工程), 1995, 7(4): 31–42.

    XIE Meibo, YUE Jianghe, WANG Haidong. The feature of various downhole safety valve system and overview of installation design[J]. China Offshore Oil and Gas (Engineer), 1995, 7(4): 31–42.
    [5]
    GARY B, HOSLI C, LUVIANO A, et al. Tubing retrievable surface controlled subsurface safety valve floating flapper remediation[R]. SPE 168271, 2014.
    [6]
    李林涛,万小勇,李渭亮,等. 高压井下安全阀的研制及性能评价[J]. 重型机械, 2018(6): 12–14. doi: 10.3969/j.issn.1001-196X.2018.06.003

    LI Lintao, WAN Xiaoyong, LI Weiliang, et al. Development and performance evaluation of high pressure subsurface safety valve[J]. Heavy Machinery, 2018(6): 12–14. doi: 10.3969/j.issn.1001-196X.2018.06.003
    [7]
    张俊良,邵勇,贾长青,等. 高含硫气井井下安全阀失效的对策及现场实践[J]. 天然气技术与经济, 2018, 12(1): 32–34. doi: 10.3969/j.issn.2095-1132.2018.01.009

    ZHANG Junliang, SHAO Yong, JIA Changqing, et al. Counter-measures against failure of subsurface safety valve used for a highsour gas well and their application[J]. Natural Gas Technology & Economy, 2018, 12(1): 32–34. doi: 10.3969/j.issn.2095-1132.2018.01.009
    [8]
    孙天礼,张广东,张文洪,等. 大牛地气田水合物堵塞预测与防治[J]. 中国科技成果, 2008(18): 42–45. doi: 10.3772/j.issn.1009-5659.2008.18.013

    SUN Tianli, ZHANG Guangdong, ZHANG Wenhong, et al. Prediction and control of hydrate blockage in Daniudi Gas Field[J]. China Achievement of Science and Technology, 2008(18): 42–45. doi: 10.3772/j.issn.1009-5659.2008.18.013
    [9]
    孙志高,石磊,樊栓狮,等. 气体水合物相平衡测定方法研究[J]. 石油与天然气化工, 2001, 30(4): 164–166. doi: 10.3969/j.issn.1007-3426.2001.04.002

    SUN Zhigao, SHI Lei, FAN Shuanshi, et al. Study of the measuring methods of gas hydrate phase equilibrium[J]. Chemical Engineering of Oil and Gas, 2001, 30(4): 164–166. doi: 10.3969/j.issn.1007-3426.2001.04.002
    [10]
    陈光进, 孙长宇, 马庆兰.气体水合物科学与技术[M].北京: 化学工业出版社, 2008: 9-11.

    CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. Beijing: Chemical Industry Press, 2008: 9-11.
    [11]
    邓柯,李颖川,李群生. 天然气水合物生成的影响因素及敏感性分析[J]. 钻井液与完井液, 2006, 23(6): 64–67. doi: 10.3969/j.issn.1001-5620.2006.06.021

    DENG Ke, LI Yingchuan, LI Qunsheng. The generation of natural gas hydrates: contributing factors and sensitivity analysis[J]. Drilling Fluid & Completion Fluid, 2006, 23(6): 64–67. doi: 10.3969/j.issn.1001-5620.2006.06.021
    [12]
    许威,邱楠生,孙长宇,等. 不同因素对天然气水合物稳定带厚度的影响[J]. 天然气地球科学, 2010, 21(3): 528–534.

    XU Wei, QIU Nansheng, SUN Changyu, et al. Effects of different factors on the thickness of gas hydrate stability zone[J]. Natural Gas Geoscience, 2010, 21(3): 528–534.
    [13]
    张振楠,孙宝江,王志远,等. 深水气井测试天然气水合物生成区域预测及分析[J]. 水动力学研究与进展(A辑), 2015, 30(2): 167–172.

    ZHANG Zhennan, SUN Baojiang, WANG Zhiyuan, et al. Predic-tion and analysis of natural gas hydrate formation region during deep water gas well testing[J]. Chinese Journal of Hydrodynamics, 2015, 30(2): 167–172.
  • Related Articles

    [1]ZHONG Haomiaomiao, SI Hu. Numerical simulation of natural gas hydrate reformation during gas recovery induced by depressurization[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025040
    [2]ZHANG Wenping, XU Zhengming, LYU Zehao, ZHAO Wen. Research on a Transient Flow Heat Transfer Model of Gas-Liquid-Solid Three-Phase Flow for Unbalanced Drilling in Deep Shale Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 96-105. DOI: 10.11911/syztjs.2023089
    [3]SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, CHEN Qiang, LIU Chenfeng, WANG Haoyu. Influence Law of Hybrid Plugging of Gravel-Packed Media on Productivityin Natural Gas Hydrate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(5): 94-101. DOI: 10.11911/syztjs.2022055
    [4]CHEN Cunliang, MA Kuiqian, WANG Xiang, YUE Honglin, WU Xiaohui. Research on the Planar Equilibrium Displacement Based on Maximum Water Injection Efficiency[J]. Petroleum Drilling Techniques, 2021, 49(3): 124-128. DOI: 10.11911/syztjs.2021028
    [5]LI Lilin, YANG Jin, LU Baoping, KE Ke, WANG Lei, CHEN Kejin. Research on Stratum Settlement and Wellhead Stability in Deep Water during Hydrate Production Testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61-68. DOI: 10.11911/syztjs.2020095
    [6]LI Zifeng, HAN Jie. Discussion of Environmental Safety Factors in Subsea Natural Gas Hydrate Exploitation[J]. Petroleum Drilling Techniques, 2019, 47(3): 127-132. DOI: 10.11911/syztjs.2019064
    [7]WEI Hongshu, DU Qingjie, CAO Bobo, WANG Zhiyuan, SUN Baojiang, LIU Zheng. The Ascending Law of Gas Bubbles in a Wellbore Considering the Phase Change of Natural Gas Hydrates during Deepwater Well Shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42-49. DOI: 10.11911/syztjs.2019035
    [8]SU Kai, ZHANG Guobiao, SUN Youhong, LI Shengli, GUO Wei. Formation Mechanism and Phase State of Hydrates in Fractured Layers of Permafrost[J]. Petroleum Drilling Techniques, 2016, 44(2): 93-98. DOI: 10.11911/syztjs.201602016
    [9]Gong Zhiwu, Zhang Liang, Cheng Haiqing, Liu Yanmin, Ren Shaoran. The Influence of Subsea Natural Gas Hydrate Dissociation on the Safety of Offshore Drilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 19-24. DOI: 10.11911/syztjs.201504004
    [10]Song Zhonghua, Zhang Shicheng, Wang Tengfei, Shen Jianxin, Duan Yuming, Liu Lanying. Downhole Throttling Technology for Gas Hydrate Prevention in Deep Gas Wells of Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 91-96. DOI: 10.3969/j.issn.1001-0890.2014.02.018
  • Cited by

    Periodical cited type(4)

    1. 曾波,冯宁鑫,姚志广,杜雨柔,黎俊峰,郑健,衡德,唐煊赫,朱海燕. 深层页岩气储层水力压裂裂缝扩展影响机理. 断块油气田. 2024(02): 246-256 .
    2. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 .
    3. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 .
    4. 殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3746) PDF downloads (75) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return