ZHANG Wei, LU Baoping, WANG Baoliang, LI Xin, LU Junyi, JI Haifeng. The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009
Citation: ZHANG Wei, LU Baoping, WANG Baoliang, LI Xin, LU Junyi, JI Haifeng. The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009

The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid

More Information
  • Received Date: September 26, 2018
  • Revised Date: December 09, 2018
  • Available Online: January 10, 2019
  • The goal of this study was to solve the problem of drilling fluids blocking circuits and losing signal during the logging process. Oil-based drilling fluids are prone to blocking the DC circuit and hence invalidating conventional resistivity when using the LWD method. In order to solve this problem, researchers proposed implementing the capacitive coupling-based non-contact conductance detection technology with a resistivity imaging LWD method suitable for oil-based drilling fluids. This paper summarized the main methods of resistivity measurement while drilling, and introduced the principle and characteristics of capacitive coupled non-contact conductance detection technology. The azimuth logging simulation model for oil-based drilling fluids was established by combining capacitive coupling principle and inductive coupling principle. Then, the logging simulation experiment under various working conditions was carried out with this model, and the relationships between the circumferential position and current amplitude, circumferential position of electrode and the current phase, as well as the imaging principle of button electrode were analyzed. The simulation results showed that the button electrode had azimuth detection capability, and the proposed logging method was feasible. A surface simulation logging system was designed to carry out the indoor test of azimuth logging. The test found that this logging system may to achieve formation imaging and measure the formation dip angle, and the relative error between the test result and the actual formation dip angle is only 4.7%. The study showed that the proposed resistivity imaging LWD method is able to perform lateral resistivity measurements while drilling in oil-based drilling fluids, and make the measured resistivity imaging to obtain the reliable logging results.

  • [1]
    原宏壮, 陆大卫, 张辛耘, 等. 测井技术新进展综述[J]. 地球物理学进展, 2005, 20(3): 786–795 doi: 10.3969/j.issn.1004-2903.2005.03.034

    YUAN Hongzhuang, LU Dawei, ZHANG Xinyun, et al. An overview of recent advances in well logging technology[J]. Progress in Geophysics, 2005, 20(3): 786–795 doi: 10.3969/j.issn.1004-2903.2005.03.034
    [2]
    邸德家, 陶果, 孙华峰, 等. 随钻地层测试技术的分析与思考[J]. 测井技术, 2012, 36(3): 294–299 doi: 10.3969/j.issn.1004-1338.2012.03.016

    DI Dejia, TAO Guo, SUN Huafeng, et al. Analysis and consideration of formation testing while drilling technology[J]. Well Logging Technology, 2012, 36(3): 294–299 doi: 10.3969/j.issn.1004-1338.2012.03.016
    [3]
    BONNER S, BURGESS T, CLARK B, et al. Measurements at the bit: a new generation of MWD tools[J]. Oilfield Review, 1993, 5(3): 44–54
    [4]
    刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm
    [5]
    潘一, 付龙, 杨双春. 国内外油基钻井液研究现状[J]. 现代化工, 2014, 34(4): 21–24 http://d.old.wanfangdata.com.cn/Periodical/xdhg201404006

    PAN Yi, FU Long, YANG Shuangchun. Research process of oil-based drilling fluid at home and abroad[J]. Modern Chemical Industry, 2014, 34(4): 21–24 http://d.old.wanfangdata.com.cn/Periodical/xdhg201404006
    [6]
    唐宇. 油基泥浆随钻成像测井仪OBM[J]. 测井技术, 2011, 35(6): 608 http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201106033.htm

    TANG Yu. Oil-based mud while drilling imaging logging tool OBM[J]. Well Logging Technology, 2011, 35(6): 608 http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201106033.htm
    [7]
    巫振观, 范宜仁, 王磊, 等. 随钻方位电磁波测井仪器偏心响应模拟及分析[J]. 中国石油大学学报(自然科学版), 2017, 41(5): 69–79 doi: 10.3969/j.issn.1673-5005.2017.05.008

    WU Zhenguan, FAN Yiren, WANG Lei, et al. Numerical modeling and analysis of eccentricity effect on borehole response of azimuthal electromagnetic logging while drilling tool[J]. Journal of China University of Petroleum(Natural Science Edition), 2017, 41(5): 69–79 doi: 10.3969/j.issn.1673-5005.2017.05.008
    [8]
    刘欢, 张占松, 黄若坤, 等. 利用油基泥浆微电阻率成像测井技术进行沉积解释[J]. 石油天然气学报, 2013, 35(6): 64–68 doi: 10.3969/j.issn.1000-9752.2013.06.012

    LIU Huan, ZHANG Zhansong, HUANG Ruokun, et al. Application of OBMI imaging logging technique for sedimentary interpretation[J]. Journal of Oil and Gas Technology, 2013, 35(6): 64–68 doi: 10.3969/j.issn.1000-9752.2013.06.012
    [9]
    GAŠ B, DEMJANĚNKO M, VACÍK J. High-frequency contactless conductivity detection in isotachophoresis[J]. Journal of Chromatography A, 1980, 192(2): 253–257 doi: 10.1016/S0021-9673(80)80001-X
    [10]
    ZEMANN A J, SCHNELL E, VOLGGER D, et al. Contactless conductivity detection for capillary electrophoresis[J]. Analytical Chemistry, 1998, 70(3): 563–567 doi: 10.1021/ac9707592
    [11]
    KUBÁŇ P, HAUSER P C. Contactless conductivity detection for analytical techniques: developments from 2010 to 2012[J]. Electrophoresis, 2013, 34(1): 55–69 doi: 10.1002/elps.v34.1
    [12]
    ZEMANN A J. Capacitively coupled contactless conductivity detection in capillary electrophoresis[J]. Electrophoresis, 2003, 24(12/13): 2125–2137
    [13]
    JI Haifeng, LYU Yingchao, WANG Baoliang, et al. An improved capacitively coupled contactless conductivity detection sensor for industrial applications[J]. Sensors and Actuators A: Physical, 2015, 235: 273–280 doi: 10.1016/j.sna.2015.09.038
    [14]
    ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771A[P]. 1967–02-21[2018–09-25].
    [15]
    李科, 鲁保平, 张家田. 数字相敏检波器在测井仪器中的应用研究[J]. 石油仪器, 2011, 25(1): 35–38 doi: 10.3969/j.issn.1004-9134.2011.01.012

    LI Ke, LU Baoping, ZHANG Jiatian. A study on the application of the digital phase sensitive detection in the well logging tools[J]. Petroleum Instruments, 2011, 25(1): 35–38 doi: 10.3969/j.issn.1004-9134.2011.01.012
    [16]
    RITTER R N, GOREK M, FULDA C, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[J]. Petrophysics, 2005, 46(2): 85–95
    [17]
    柳杰, 殷小敏, 张彦伟, 等. 新型油基泥浆测井电成像方法研究[J]. 地球物理学进展, 2015, 30(2): 790–796 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201502042.htm

    LIU Jie, YIN Xiaomin, ZHANG Yanwei, et al. A novel approach for borehole electrical imaging in oil-based mud[J]. Process in Geophysics, 2015, 30(2): 790–796 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201502042.htm
    [18]
    高霞, 谢庆宾. 储层裂缝识别与评价方法新进展[J]. 地球物理学进展, 2007, 22(5): 1460–1465 doi: 10.3969/j.issn.1004-2903.2007.05.017

    GAO Xia, XIE Qingbin. Advances in identification and evaluation of fracture[J]. Progress in Geophysics, 2007, 22(5): 1460–1465 doi: 10.3969/j.issn.1004-2903.2007.05.017
    [19]
    CHEN G, CHUI C K. A modified adaptive Kalman filter for real-time applications[J]. IEEE Transactions on Aerospace & Electronic Systems, 1991, 27(1): 149–154
  • Related Articles

    [1]JIN Yan, BO Kehao, ZHANG Yazhou, LU Yunhu. Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159-169. DOI: 10.11911/syztjs.2023024
    [2]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [3]MAO Xinjun, CAO Zhigang, CHEN Chaofeng, HU Guangwen, FENG Meng, XIAN Yuxi. A New Thermal Fluid Coupling Temperature Inversion for the Formation Characteristics of High-Yield Wells[J]. Petroleum Drilling Techniques, 2020, 48(4): 118-123. DOI: 10.11911/syztjs.2020062
    [4]LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052
    [5]HE Shiming, LIU Sen, ZHAO Zhuanling, TANG Ming, LI Heng, DENG Fuyuan. The Dynamic Laws of Overflow Intrusion in Fractured Formations[J]. Petroleum Drilling Techniques, 2018, 46(6): 26-32. DOI: 10.11911/syztjs.2018137
    [6]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [7]LI Yuansheng, YANG Zhixing, TENG Sainan, LIAO Hengjie, CHEN Zili. A Novel Method for Predicting the Timing of Water Breakthrough in Edge-Water Gas Reservoirs by Considering Reservoir Dip and Water Invasion[J]. Petroleum Drilling Techniques, 2017, 45(1): 91-96. DOI: 10.11911/syztjs.201701016
    [8]LIANG Haiming, PEI Xueliang, ZHAO Bo. Coring Techniques in Shale Formations and Their Field Application[J]. Petroleum Drilling Techniques, 2016, 44(1): 39-43. DOI: 10.11911/syztjs.201601008
    [9]Yu Fu, Jin Yan, Chen Mian, Lu Yunhu, Niu Chengcheng, Ge Weifeng. Discussion on a Formation Pore Pressure Detection Method for Carbonate Rocks Based on the Thin Plate Theory[J]. Petroleum Drilling Techniques, 2014, 42(5): 57-61. DOI: 10.11911/syztjs.201405010
  • Cited by

    Periodical cited type(6)

    1. 侯洪为,于增辉,刘耀伟,廖胜军,王芝江,王蕙. 井下油基泥浆电阻率和介电常数测量方法与测量探头设计. 石油管材与仪器. 2024(02): 23-25+30 .
    2. 尤嘉祺,陈刚,陈思嘉,阳质量,许月晨,唐章宏. 随钻侧向电阻率仪器钮扣电极扫描成像影响因素分析. 测井技术. 2022(01): 11-14+28 .
    3. 刘冀昆,王成虎,乾增珍,周昊,谷佳诚. 超声波钻孔成像技术在岩体质量定量评价中的应用. 工程勘察. 2022(12): 6-11+46 .
    4. 孙成芹,胡永建,李显义,孙琦,唐昱哲,张冠杰. 基于HFSS仿真的感应耦合传输装置设计. 电子测量技术. 2021(02): 32-35 .
    5. 魏峰,李跃林. 基于测录井资料的复杂流体性质识别技术. 断块油气田. 2020(06): 760-765 .
    6. 梁开华. 地球物理测井在新疆沙吉海一号井田中的应用. 能源与环保. 2019(10): 79-84 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (12163) PDF downloads (81) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return